• Title/Summary/Keyword: typhoon-induced

Search Result 133, Processing Time 0.034 seconds

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

Changes of Current and Wave Patterns Depending on Typhoon Pathways in a Shallow Channel between Jeju and Udo Island (태풍 경로에 따른 제주 우도수로에서의 해류와 파랑 특성 변화)

  • Hong, Ji-Seok;Moon, Jae-Hong;Yoon, Seok-Hoon;Yoon, Woo Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.205-217
    • /
    • 2021
  • A shallow channel between Jeju and Udo Islands, which is located in the northeastern Jeju Island, is influenced by storm- or typhoon-induced currents and surface waves as well as strong tidal currents. This study examines the typhoon-induced current and wave patterns in the channel, using Acoustic Doppler Current Meter (ADCP) measurements and an ocean-wave coupled modeling experiment. Three typhoons were chosen - Chaba (2016), Soulik (2018), and Lingling (2019) - to investigate the responses of currents and waves in their pathways. During the pre-typhoon periods, dominant northward flow and wave propagation were observed in the channel due to the southeasterly winds before the three typhoons. After the passage of Chaba, which passed over the eastern side of Jeju Island, the northward flow and wave propagation were totally reversed to the opposite direction, which was attributed to the strong northerly winds on the left side of the typhoon. In contrast, in the cases of Soulik and Lingling, which passed over the western side of Jeju Island, strong southerly winds on the right side of the typhoons continuously intensified the northward current and wave propagation in the channel. The model-simulated current and wave fields reasonably coincided with observational data, showing southward/northward flow and wave propagation in response to the right/left side of the typhoon pathways. Typhoon-induced downwind flows, and surface waves could enhance up to 2m/s and 3m due to the strong winds that lasted for more than 12 hours. This suggests that the flow and wave patterns in the Udo channel are highly sensitive to the pathway of typhoons and accompanying winds; thus, this may be a crucial factor with regard to the movement of seabed sediments and subsequent coastal erosion.

Anthropogenic Fingerprint on Recent Changes in Typhoon Heavy Rainfall beyond Tipping-Point (최근 태풍 호우에서 보이는 인류세 지문의 변화: 임계점을 넘어서)

  • Hyungjun Kim;Nobuyuki Utsumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.87-87
    • /
    • 2023
  • The impact of climate change on typhoons is a major concern in East Asia, especially due to the destructive effects of heavy rainfall on society and the economy, as many megacities are located along coastal regions. Although observations suggest significant changes in typhoon heavy rainfall, the extent to which anthropogenic forcing contributes to these changes has yet to be determined. In this study, we demonstrate that anthropogenic global warming has a substantial impact on the observed changes in typhoon heavy rainfall in the western North Pacific region. Observation data indicates that, in general, typhoon heavy rainfall has increased (decreased) in coastal East Asia (tropical western North Pacific) during the latter half of the 20th century and beyond. This spatial distribution is similar to the "anthropogenic fingerprint" observed from a set of large ensemble climate simulations, which represents the difference between Earth systems with and without human-induced greenhouse gas emissions. This provides evidence to support the claim that the significant increase in the frequency of typhoon heavy rainfall along coastal East Asia cannot be solely explained by natural variability. In addition, our results indicate that the signal of the "anthropogenic fingerprint" has been increasing rapidly since the mid-1970s and departed from natural variability in the early 2000s, indicating that the regional summer climate has already crossed the tipping point.

  • PDF

Landslide Characteristics induced by Heavy Rainfall in Samcheok Area (집중호우시 발생된 삼척지역의 산사태 특성)

  • Song Young-Suk;Jang Yoon-Ho;Kim Jin-Seok
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.435-445
    • /
    • 2005
  • Landslides induced by heavy rainfall from typhoon 'Rusa' in 2002 and typhoon 'Meami' in 2003 were investigated at Samcheok area, and the relationship between landslides and rainfall on that area was analyzed. The average annual rainfall at Samcheok area is generally $1,200mm\~1,300mm$. However, the average annual rainfall at samcheok for 2003 and ton was increased more than 2,000mm because of typhoon 'Rusa' and typhoon 'Meami'. The number of landslides and the landslides area are largely occurred in a area of the relatively high maximum hourly rainfall and 2days cumulative rainfall. Therefore, it confirmed that landslides are directly depended on the hourly rainfall and the cumulative rainfall. The landslides at Samcheok area induced by heavy rainfall due to typhoon are more influenced by the maximum hourly rainfall at the landslide occurrence day. In order to predict a rational landslide size, a new method included the maximum hourly rainfall and the landslide area in a traditional way was proposed. As the result of applying the new proposed method, the landslide size at Samcheok area is involved in the large scale landslide.

Estimation of Inundation Damages of Urban area Around Haeundae Beach Induced by Super Storm Surge Using Airborne LiDAR Data (항공 LiDAR 자료를 이용한 슈퍼태풍 내습시 해운대 해수욕장 인근 도심지역 침수 피해 규모 추정)

  • Han, Jong-Gyu;Kim, Seong-Pil;Chang, Dong-Ho;Chang, Tae-Soo
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.341-350
    • /
    • 2009
  • As the power and scale of typhoons are growing due to global warming and socioeconomic damages induced by super-typhoons are increasing, it is important to estimate inundation damages and to prepare proper adaptation plans against an attack of the super-typhoon. In this paper, we estimated the inundation damages of urban area around Haeundae beach induced by super-typhoons which follow the route of Typhoon Maemi with the conditions of Typhoon Vera (Ise Bay in Japan, 1959), Typhoon Durian (Philippine, 2006) and Hurricane Katrina (New Oleans in U.S.A, 2005). The coastal area around the Haeundae beach (Busan and Gyeongnam province) is expectedly damaged by severe storm surges. In this study we calculated the rise of sea level height after harmonizing the different datum levels of land and ocean and estimated the inundation depth, inundation area and the amount of building damages by using airborne LiDAR data and GIS spatial analysis techniques more accurately and quantitatively. As many researchers are predicting that super-typhoon of overwhelming power will occur around the Korean peninsula in the near future, the results of this study are expected to contribute to producing coastal inundation map and evacuation planning.

  • PDF

Numerical Modelling of Typhoon-Induced Storm Surge on the Coast of Busan (부산 연안에서 태풍에 의한 폭풍해일의 수치모델링)

  • Cha-Kyum Kim;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.760-769
    • /
    • 2023
  • A numerical simulations were performed to investigate the storm surge during the passage of Typhoon Maemi on the coast of Busan. The typhoon landed on the southern coasts of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa, and the typhoon resulted on the worst coastal disaster on the coast of Busan in the last decades. Observed storm surges at Busan, Yeosu, Tongyoung, Masan, Jeju and Seogwipo harbors during the passage of the typhoon were compared with the computed data. The simulated storm surge time series were in good agreement with the observations. The simulated peak storm surges were estimated to be 230 cm at Masan harbor, 200 cm at Yeosu harbor and Tongyoung harbor, and 75 cm at Busan harbor. The computed storm surges along the east coast of Busan measure 52 to 55 cm, exhibiting a gradual reduction in surge height as one moves further from the coast of Busan. Therefore, coastal inundation due to the storm surge in the semi-enclosed bay can induce great disasters, and the simulated results can be used as the important data to reduce the impact of a typhoon-induced coastal disaster in the future.

An analysis on the characteristics of landslides induced by heavy rainfall associated with Typhoons Herb (1996) and Troaji (2001) in Nantou on Taiwan

  • Cheng, Hsin-Hsing;Chang, Tzu-Yin;Liou, Yuei-An;Hsu, Mei-Ling
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1254
    • /
    • 2003
  • Debris flows associated with landslides occur as one of the most devastating natural disasters that threat Taiwan. Typically, three essential factors are needed simultaneously to trigger debris flow, namely sufficient soils and rocks, favorable slope, and abundant water. Among the three essentials, the slope is natural and static without external forcing, while the landslide is generally induced by earthquake or rainfall events, and the water is produced by heavy rainfall events. In this study, we analyzed the landslides triggered by the typhoons Herb (1996) and typhoon Troaji (2001). It is concluded that the statistical data are useful to quantify the threshold of the potential landslide area. Then, the possibility to prevent the debris flow occurrence may be increased.

  • PDF

Regionalization of Conceptual Rainfall-Runoff Model to Simulate Runoff Induced by Typhoons (태풍 발생 시 유출량 산정을 위한 개념적 강우-유출 모형의 지역화 연구)

  • Chang, Hyung Joon;Lee, Ho Jin;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.63-72
    • /
    • 2019
  • There is an increasing demand for catchment runoff estimation to cope with the natural disasters such as typhoon, extreme rainfall. However, the ungauged catchments are common case in practices. This study suggested a rationalization of conceptual rainfall-runoff model for typhoon flood events in Geum river region. And the developed models were validated based on the observed hydrological data. Therefore, developed regionalization models could estimate catchment runoff for Typhoon flood events. It will be used as basic data for the river management for extreme flood conditions.

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

Dynamic Behavior of Caisson Type Breakwater Considering Typhoon-induced Wave Loading Before and After Earthquakes (태풍 파랑과 지진을 연계한 케이슨식 방파제의 동적거동)

  • Hyeonsu Yun;Byeongjin Roh;Seong-Kyu Yun;Gichun Kang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • Recently, the frequency and intensity of typhoon-induced wave loading are increasing due to changed marine environments such as climate change. In addition, frequent earthquakes are causing a lot of damage around the world, including in Japan, Chile, Haiti, China, and Indonesia. In Korea, damage from typhoons has also been increasing since the 2000s, and the frequency and intensity of earthquakes are also increasing. Korea is surrounded by sea on three sides, so typhoons can cause a lot of damage to coastal structures, and earthquakes also cause a lot of damage to coastal structures. As such, the frequency and intensity of typhoon-induced wave loading and earthquakes are increasing both domestically and internationally, but there is no research linking typhoons and earthquakes. Therefore, in this study, numerical analysis was performed for a total of four cases by linking typhoon waves and earthquakes to the caisson breakwater. Numerical analysis was performed by applying wave loads in Case 1 and seismic wave in Case 2, seismic wave after wave loads in Case 3, and wave loads after seismic wave in Case 4. As a result of the numerical analysis, it was confirmed that in Case 3 and Case 4, which linked a typhoon and earthquakes, the damage caused by each load increased compared to Case 1 and Case 2 because the load was applied while the existing ground strength was reduced. In addition, it was confirmed that the greatest damage occurred in Case 3, in which seismic wave were applied after the wave loads.