DOI QR코드

DOI QR Code

Regionalization of Conceptual Rainfall-Runoff Model to Simulate Runoff Induced by Typhoons

태풍 발생 시 유출량 산정을 위한 개념적 강우-유출 모형의 지역화 연구

  • Chang, Hyung Joon (School of Civil Engineering, Chungbuk National University) ;
  • Lee, Ho Jin (School of Civil Engineering, Chungbuk National University) ;
  • Lee, Hyo Sang (School of Civil Engineering, Chungbuk National University)
  • Received : 2019.11.20
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

There is an increasing demand for catchment runoff estimation to cope with the natural disasters such as typhoon, extreme rainfall. However, the ungauged catchments are common case in practices. This study suggested a rationalization of conceptual rainfall-runoff model for typhoon flood events in Geum river region. And the developed models were validated based on the observed hydrological data. Therefore, developed regionalization models could estimate catchment runoff for Typhoon flood events. It will be used as basic data for the river management for extreme flood conditions.

최근 이상기후로 집중호우 및 태풍 등과 같은 극한홍수사상의 발생으로 인한 인적 및 물적 피해가 과거와 비교하여 증가되고 있다. 이러한 피해를 예방하기 위하여 유역 수문분석이 필요하지만, 미계측 유역에서는 수문분석을 위한 수문 자료의 관측이 비교적 제한적이다. 이에 본 연구에서는 수문 자료가 제한적인 미계측 유역의 태풍사상에 의한 피해에 대비하기 위하여 개념적 강우-유출 모형의 지역화 모형을 개발하였다. 개발된 지역화 모형의 검증을 통하여 유역을 대표하는 모형 매개변수를 산정할 수 있다고 판단하였다. 향후 하천관리 및 수방시설물 설계에 기초 자료로 활용될 것으로 기대한다.

Keywords

References

  1. Chang, H. J., Kjeldsen, T., McIntyre, N., and Lee, H. S. (2018). Regionalisation of a PDM Model for Catchment Runoff in a Mountainous Region of Korea. KSCE Journal of Civil Engineering. 22(11): 4699-4709. https://doi.org/10.1007/s12205-018-1629-7
  2. Jakeman, A. J. and Hornberger, G. M. (1993). How Much Complexity is Warranted in a Rainfall-Runoff Model? Water Resources Research. 29(8): 2637-2649. https://doi.org/10.1029/93WR00877
  3. Jakeman, A. J., Littlewood, I. G., and Whitehead, P. G. (1990). Computation of the Instantaneous Unit Hydrograph and Identifiable Component Flows with Application to Two Small Upland Catchments. Journal of Hydrology. 117(1-4): 275-300. https://doi.org/10.1016/0022-1694(90)90097-H
  4. Kang, M. G., Lee, J. H., and Park, K. W. (2013). Parameter Regionalization of a Tank Model for Simulating Runoffs from Ungauged Watersheds. Journal of Korea Water Resources Association. 46(5): 519-530. https://doi.org/10.3741/JKWRA.2013.46.5.519
  5. Kim, K. T., Shim, M. P., and Sonu, J. H. (1999). Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map. Journal of Korea Water Resources Association. 32(2): 163-176.
  6. Kim, T. J., Jeong, G. I., Kim, K. Y., and Kwon, H. H. (2015). A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics. Journal of Korea Water Resources Association. 45(10): 793-806.
  7. Lee, B. J., Ko, H. Y., Chang, K. Ho., and Choi, Y. J. (2011). Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin. Journal of Korea Water Resources Association. 44(9): 721-730. https://doi.org/10.3741/JKWRA.2011.44.9.721
  8. McIntyre, N., Lee, H. S. H., Wheather, A. Y., and Wagener, T. (2005). Ensemble Predictions of Runoff in Ungauged Catchments, Water Resources Research. 41(12): W12434. https://doi.org/10.1029/2005WR004289
  9. Ministry of Land, Transport and Maritime Affairs. (2011). Maintenance Plan Report (Guem-River).
  10. Moore, R. J. (2007). The PDM Rainfall-runoff Model. Hydrology and Earth System Sciences. 11(1): 483-499. https://doi.org/10.5194/hess-11-483-2007
  11. National Emergency Management Agency. (2012). 2012 Statistical Yearbook of Natural Disaster.
  12. Wagner, T., Wheater, H., and Gupta, H. (2004), Rainfall-Runoff Modeling in Gaged and Ungaged Catchments, London. Imperial College Press. London.