• Title/Summary/Keyword: type of specimens

Search Result 2,202, Processing Time 0.027 seconds

Mechanical Properties of Strain-Hardening Cement Composites(SHCCs) according to the Water-Cement Ratio (물시멘트비에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Kim, Yun-Su;Jang, Yong-Heon;Jang, Gwang-Su;Jeon, Esther;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.465-468
    • /
    • 2008
  • SHCCs (Strain Hardening Cement Composites) show the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCCs, it is needed to investigate the compression, four-point bending, direct tensile response of SHCCs with different types of fibers and water-cement ratio. For these purposes, three kinds of fibers were used: PP(polypropylene, 2.0%), PVA(Polyvinyl alcohol, 2.0%), PE (Polyethylene, 1.0%). Also, effects of water-cement ratio(0.45, 0.60) on the SHCCs were evaluated in this paper. As the result of test, SHCCs with PVA and PE fiber were showed better overall behavior than specimens with PP fibers on bending and direct tensile test. Also, for the same type of fiber, SHCCs with water-cement ratio of 0.45 exhibited higher ultimate strength than specimen with water-cement ratio of 0.60 on compression strength, and showed the multiple cracking on bending and direct tensile test. Therefore, to improve of workability and dispersibility of SHCCs on water-cement ratio of 0.60, continual studies were needed.

  • PDF

Effect of Fines on Unconfined Compressive Strength of Cemented Sands (세립분이 고결모래의 일축압축강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.213-220
    • /
    • 2011
  • Fines such as silt or clay are usually mixed with granular particles in natural or reclaimed soils which are slightly cemented. Such fines contained within weakly cemented soils may influence permeability and also mechanical behavior of the soils. In this study, a series of unconfined compression tests on weakly cemented sands with fines are carried out in order to evaluate the effect of fines on unconfined compressive strength (UCS) of cemented soils. Two different cement ratios and fine types were used and fine contents varied by 5, 10, and 15%. Two types of specimens were prepared in this testing. One is the specimen with the same compaction energy applied. The other is the one with the same dry density by varying compaction energy. When the same amount of compaction energy was applied to a specimen, its density increased as a fine content increased. As a result, the UCS of cemented soils with fines increased up to 2.6 times that of one without fines as an amount of fines increased. However, when the specimen was prepared to have the same density, its UCS slightly decreased and then increased a little as a fine content increased. Under the same conditions, a UCS of the specimen with silt was stronger than the one with kaolin. As a cement ratio increased, a UCS increased regardless of fine type and content.

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

Evaluation of Corrosion Effects on Permanent Ground Anchors (영구 지반앵커에 대한 부식의 영향 평가)

  • Park, Hee-Mun;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 2004
  • The corrosion rate measurement procedure for the permanent ground anchors using polarization resistance measurements and electrochemical impedance spectroscopy is presented in this paper. The polarization resistance measurements were used to determine the correlation between corrosion rate in the steel and soil characteristics. The electrochemical impedance spectroscopy was used to predict the time dependent corrosion reaction and evaluate the different type of coating systems and the effect of cement grouting on the corrosion attack under various conditions. The results indicate that a low pH soil is a good indicator of a corrosive soil. The low pH soil condition (<5) in both clay and sand has a significant effect on the corrosion reaction of steel members in permanent found anchors. In the case of neutral and alkaline conditions beyond pH 6 in clay and sand, no consistent acceleration of corrosion was measured and the corrosion rate was constant regardless of variations of soil pH levels. Laboratory test data for porcelain clay indicate that the change of soil pH level has a small influence on the corrosion reaction in the steel member. The use of cement footing in the bonded length is sufficient to decrease the corrosion rate to a level close to 0.003∼0.01mm/y at the end of the given period. With epoxy and fusion bonded epoxy coating, the steel specimens remained unaffected and retained the original condition. It is suggested that epoxy and fusion bonded epoxy coating can provide effective protection against corrosion for a long time even in aggressive environment.

Interlayered Structures of Talc and Chlorite in the Talc Deposits of the Yugu Area, Korea (충남 유구지역 활석광상에서 관찰되는 활석과 녹니석의 혼합층상 특성)

  • Kim Geon-Young;Kim Soo Jin;Koh Yong Kwon;Bae Dae Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.195-204
    • /
    • 2005
  • Interlayered structures of talc and chlorite in the talc deposits of the Yugu area are studied using transmission electron microscope. Packets of chlorite-like layer in talcs or packets of talc-like layer in chlorites are commonly observed. Randomly interlayered features of talc and chlorite are locally observed in some specimens. Reactions observed in the present study include the addition or removal of a brucite-like layer in the interlayer region of the talc or chlorite resulting in the , transformation between a talc and a chlorite layers and breakdown or formation of a talc-like layer resulting in transformation between two talc layer and one chlorite layer. Both reactions are accompanied by a significant change in volume. In addition to these mechanisms, there are two volume conserving mechanisms; the combination of both mechanisms and mutual transformation in a complex manner. Reactions from 2 chlorite layers to 3 talc layers, from 2 chlorite layers + 1 talc layers to 1 chlorite layers + 3 talc layers, and from 3 chlorite layers to 5 talc layers are observed among the complex type mechanisms.

Taxonomy of the Allium sect. Sacculiferum in Korea: with a special reference to the morphology (한국산 부추속(Allium) 산부추절(sect. Sacculiferum)의 분류: 형태학적 형질을 중심으로)

  • Choi, Hyeok-Jae;Oh, Byoung-Un
    • Korean Journal of Plant Taxonomy
    • /
    • v.33 no.4
    • /
    • pp.339-357
    • /
    • 2003
  • The general morphological characters and chromosome numbers about 7 taxa of Korean Allium sect. Sacculiferum were reviewed. From the results, authors elucidated the key character as well as the range of variations in each taxon, and considered the relationships among taxa in this section. Clear taxonomic treatments also carried out based on the type specimens and the original descriptions. Shape and growing pattern of leaves, size of inflorescences, shape of perianths and tepals, as well as chromosome numbers were key characters in identifying the taxa and in estimating their relationships. On the basis of these characters, A. thunbergii var. thunbergii, A. sacculiferum and A. deltoide-fistulosum were recognised as a distinct species respectively. Hal-la-bu-chu which had been misidentified as A. cyaneum (sect. Reticulato-bulbosa) in Korea was proved to be A. taquetii and belonged to the sect. Sacculi/erum. In addition, A. cyaneum var. deltoides, had been described as a variety of A. cyaneum, was recombined as a variety of A. thunbergii [A. thunbergii var. deltoides (S. Yu, W. Lee et S. Lee) H. J. Choi et B. U. Oh] with the new Korean name of 'Se-mo-san-bu-chu'. In conclusion, Korean sect. Sacculiferum was composed of five species and two varieties. A key to identify the taxa in this section was provided.

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

EFFECT OF RESIN SEALANTS ON THE REDUCTION OF MICROLEAKAGE IN COMPOSITE RESTORATIONS (복합레진 수복물의 미세누출 감소를 위한 레진 전색제의 효과)

  • Cho Young-Gon;Kim Mun-Hong;Lee Myung-Goo
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.282-289
    • /
    • 2006
  • The purpose of this study was to compare the ability of three resin surface sealants to prevent microleakage in Class V composite resin restorations. Forty Class V cavities with the occlusal margin in enamel and gingival margin in dentin were prepared on the buccal surfaces of sound extracted molars, and restored with composite resin. Restorations were randomly assigned into one of four equal groups (n = 10): a control group, without resin sealing, and three experimental groups in which margins were sealed with Fortify Plus, Biscover and Permaseal, respectively. Specimens were thermocycled, immersed in a 2% methylene blue solution for 4 hours, sectioned longitudinally, and observed the leakage at the occlusal and gingival margins. The result was analyzed using Kruskal-Wallis test, Mann-Whitney test and Wilcoxon signed rank test. In conclusion, the ability to reduce microleakage at occlusal margins was similar in all of three sealants. However at gingival margin, it depended on the type of used resin surface sealant. At gingival margin. control and Fortify Plus group showed statistically higher microleakage than PermaSeal group. and Fortify Plus group also showed higher microleakage than BisCover group (p < 0.05).

Genotypic Detection of Extended-Spectrum β-Lactamase-Producing of Klebsiella pneumoniae (Extended-Spectrum β-Lactamase 생성 Klebsiella pneumoniae 균주의 유전형 검출)

  • Yook, Keun-Dol;Yang, Byoung-Seon;Park, Jin-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1191-1196
    • /
    • 2013
  • Among Gram-negative pathogens in Korea, the incidence of resistance to third generation cephalosporins is becoming an ever-increasing problem. The production of extended-spectrum ${\beta}$-lactamase (ESBL) is the main mechanism of bacterial resistance to a third-generation cephalosporins and monobactams. Accurate identification of the ESBL genes are necessary for surveillance and epidemiological studies of the mode of transmission in the hospital. This study was conducted to detect the genes encoding ESBL of 46 K. penumoniae isolated from Daejeon, Chungnam and Chungbuk regional university hospitals from February to August in 2012. The phenotypes of the isolated specimens were examined according to the combination disc test (CDT) by the Clinical and Laboratory Standards Institute (CLSI). Forty two ESBL producing K. penumoniae isolates could be detected using ceftazidime (CAZ) discs with and without clavulanate (CLA). By CDT, 42 K. pneumoniae strains were confirmed to be ESBL strains. Genotyping was performed by multiplex PCR with type-specific primers. By PCR analysis, TEM gene in 46 strains, SHV gene in 37 strains and CTX-M genes in 14 strains were identified. Ten isolates did carry genes encoding ESBLs of all types TEM, SHV and CTX-M. The multiplex polymerase chain reaction (PCR) analysis was better to detect and differentiate ESBL producing K. penumoniae strains in clinical isolates.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.