• 제목/요약/키워드: two-zone combustion model

검색결과 35건 처리시간 0.024초

밸브오버랩기관과 양정변화가 엔진특성에 미치는 영향에 관한 연구 (A study on the Valve Overlap Period and Valve Lift on the SI Engine Characteristics)

  • 황재원;김응혁;황화자;한정희;채재우
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.28-36
    • /
    • 2001
  • In this study, a zero-dimensional two zone model is developed to investigate the effects of valve overlap period and valve lift on combustion and gas exchange process in SI engine. The simulation results show that the predicted data has good agreements with experimental ones. The useful information of combustion and gas exchange process such as residual gas fraction, cylinder pressure, mass flow rate and volumetric efficiency can be obtained and the effects of engine variables on combustion processes and performances can be evaluated.

  • PDF

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System)

  • 박경석;원종필;정동화
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.

초음속 확산화염 내의 혼합과 재순환 영역에 대한 충격파의 영향 (Effects of Shock Waves on the Mixing and the Recirculation Zone of Supersonic Diffusion Flames)

  • 김지호;허환일;최정열;윤영빈;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.123-129
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of shock waves on the mixing and the recirculation zone of a hydrogen jet diffusion flame in a supersonic combustor. The general trends are compared with the experimental results obtained from the supersonic combustor at the University of Michigan. For the numerical simulation of supersonic diffusion flames, multi-species Navier-Stokes equations and detailed chemistry reaction equations of $H_2$-Air are considered. The $K-{\omega}/k-{\varepsilon}$ blended two equation turbulent model is used. Roe's FDS method and MUSCL method are used for convection fluxes in governing equations. Numerical results show that when slender wedges are mounted at the combustor wall the mixing and the combustion are enhanced and the size of recirculation zone is increased . The flame shape of supersonic flames is different in the flame-tip; it is not closed but open. The flame shape is shown to be greatly affected by shock waves.

  • PDF

스파아크 점화기관의 사이클 시뮬레이션과 실험적 방법에 의한 성능, 배출가스, EGR효과의 예측에 관한 연구 (The prediction of performance, exhaust emissions and EGR effect of a spark ignition engine by cycle simmulation and experimental method)

  • 정용일;성낙원
    • 오토저널
    • /
    • 제8권2호
    • /
    • pp.31-42
    • /
    • 1986
  • The prediction of performance, exhaust emissions and EGR effect is made by the SI engine cycle simulation. In this simulation several models are employed - two zome, thermodynamic combustion, mass fraction burned, heat transfer, chemical equilibrium, chemical kinetics for NOx, laminar flame speed for ignition delay. The chemical species in burned gas considered are 13 species-CO$_{2}$, CO, $O_{2}$, H$_{2}$O, H$_{2}$,OH, H, O, N$_{2}$, NO$_{2}$, N, Ar - and the cylinder pressure, burned and unburned zone temperature and composition of gas are calculated at each crank angle through the compression, ignition delay, combustion and expansion process. To check the validity of the model, experimental study is done for measuring emissions, combustion pressure and engine output. The predicted values for pressure and emissions show qualitative agreement with the measured data and the EGR effect also shows similar tendency.

  • PDF

4기통 4사이클 스파크 점화기관의 성능 및 배기조성 예측에 관한 연구 (Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine)

  • 유병철;최영돈;윤강식
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.39-56
    • /
    • 1988
  • In this study, the computer program was developed to predict the engine performances and exhaust emissions of a 4-cylinder 4-stroke cycle ignition engine including intake and exhaust system. The simulation models applied to each process were as follows. For the combustion process, two zone model which requires only one empirical constant was applied, and for the gas exchange process, the method of characteristics that allows the calculations of the time variation and spatial variation of properties along the pipes was used. Constant pressure perfect mixing model was applied to take into account of the interaction at manifold branches. To predict exhaust emissions, twelve chemical species were considered to be present in combustion products. These species were calculated through equilibrium thermodynamics and kinetic theory. The empirical constants reduced to least number as possible were determined through the comparison with the experimental indicator diagram of one particular operating condition and these constants were applied to other operating conditions. The predicted performances and emissions were compared with the experimental results over the wide range of operating conditions.

  • PDF

선박용 가스엔진의 NOx 배출량예측에 관한 연구 (Prediction of NOx emission for marine gas engines)

  • 장하식;이지웅;이강기;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.658-665
    • /
    • 2014
  • 선박용 디젤엔진에서 천연가스의 사용기술은 NOx, SOx 및 GHG의 배출을 단독으로 크게 삭감할 수 있는 기술이다. 특히 셰일가스의 등장으로 가스의 공급이 확대될 것으로 예상되는 가운데 추진기관용 2행정기관에의 이용이 적극적으로 개발 검토되고 있다. 가스엔진의 출력성능은 디젤기관과 비교하여 큰 차이를 보이지 않았으며 연료소비율은 약간 개선되는 것으로 보고되고 있다. 그러나 배기특성에 있어서는 연소기술에 따라서 다른 성능을 나타내고 있으며 희박연소기술에 의하여 NOx 배출량은 85%정도의 감축이 가능한 것으로 알려져 있다. 본 연구에서는 가스엔진의 연소생성물의 발생량을 시뮬레이션 할 수 있는 프로그램을 개발하였다. 개발된 프로그램은 희박연소의 영향은 물론 예혼합연소와 확산연소에 의한 영향도 시뮬레이션 할 수 있는 기능을 가지고 있다. 이를 위해서 실린더 내 상태변화는 2영역모델(Two-zone model)을 이용하고 열발생율 패턴은 Wiebe 함수를 이용하며, 공연비를 입력데이터로 하여 다양한 연소조건에서의 배기생성물의 발생량 예측을 가능하게 하였다.

디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구 (A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine)

  • 김상암;왕우경
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

4행정 가솔린 기관의 성능 예측에 관한 연구 (A Study of Performance Prediction for 4-stroke Gasoline Engine)

  • 김형섭;장형성
    • 한국안전학회지
    • /
    • 제5권1호
    • /
    • pp.49-55
    • /
    • 1990
  • A comprehensive cycle simulation was developed to predict the performance of gasoline engine including intake and exhaust systems with variation of operating conditions and design factors. In this study, the gas exchange model, compression and expansion model, two-zone combustion model and heat transfer model were used. In order to confirm the feasibility of the simulation program, the calculated results were compared with experimental results. P-$\theta$ diagrams, I. M. E. P. and S. F. C by means of calculation showed acceptable quantitative agreement with the experimental data. Therefore, this program is particularly well adapted to indicating the direction of the optimal design and optimal operating conditions for gasoline engine.

  • PDF

4실린더 4사이클 가솔린기관에서 배기계의 형상이 기관성능에 미치는 영향에 관한 연구 (A Study on the Effect of Exhaust Manifold Configuration on Engine Performance in a 4 Cylinder 4 Cycle Gasoline Engine)

  • 정수진;김태훈;조진호
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.751-767
    • /
    • 1994
  • Recent developments of S.I. engine, aiming to higher power, better fuel economy, lower air pollution and better driveability, have much focused on the importance of the role of computer simulation in engine research and development. In this point of view, improving engine performance requires finding some means to improve volumetric efficiency. Up to now there have been several attempts to optimize the intake and exhaust system of internal system of S.I. engine by computer simulation. There appear to be few studies available, however, of such simulation & experimental studies applied to the optimization of exhaust manifold configuration. In this study, gas exchange & power process of 4 cylinder S.I. Engine was studies numerically & experimentally, and governing equation of a one-dimensional unsteady compressible flow and combustion process were respectively solved by a characteristics method and 2-zone model. The aim of this study is to predict and investigate the influence of pressure wave interaction at the exhaust systems on engine performance with widely differing exhaust manifold configuration.