• 제목/요약/키워드: two-way slabs

검색결과 65건 처리시간 0.022초

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Modeling of post-tensioned one-way and two-way slabs with unbonded tendons

  • Kim, Uksun;Huang, Yu;Chakrabarti, Pinaki R.;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.587-601
    • /
    • 2014
  • A sophisticated finite element modeling approach is proposed to simulate unbonded post-tensioned concrete slabs. Particularly, finite element contact formulation was employed to simulate the sliding behavior of unbonded tendons. The contact formulation along with other discretizing schemes was selected to assemble the post-tensioned concrete system. Three previously tested unbonded post-tensioned two-way and one-way slabs with different reinforcement configurations and boundary conditions were modeled. Numerical results were compared against experimental data in terms of global pressure-deflection relationship, stiffness degradation, cracking pattern, and stress variation in unbonded tendons. All comparisons indicate a very good agreement between the simulations and experiments. The exercise of model validation showcased the robustness and reliability of the proposed modeling approach applied to numerical simulation of post-tensioned concrete slabs.

Numerical assessment of rectangular one- and two-way RC slabs strengthened with CFRP under impact loads

  • Mohamed Emara;Ahmed Hamoda;Jong Wan Hu
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.

Numerical investigation on the structural behavior of two-way slabs reinforced with low ductility steel

  • Sakka, Zafer;Gilbert, R. Ian
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.223-231
    • /
    • 2018
  • A numerical investigation of the impact of steel ductility on the strength and ductility of two-way corner and edge-supported concrete slabs containing low ductility welded wire fabric is presented. A finite element model was developed for the investigation and the results of a series of concurrent laboratory experiments were used to validate the numerical solution. A parametric investigation was conducted using the numerical model to investigate the various factors that influence the structural behavior at the strength limit state. Different values of steel uniform elongation and ultimate to yield strength ratios were considered. The results are presented and evaluated, with emphasis on the strength, ductility, and failure mode of the slabs. It was found that the ductility of the flexural reinforcement has a significant impact on the ultimate load behavior of two-way corner-supported slabs, particularly when the reinforcement was in the form of cold drawn welded wire fabric. However, the impact of the low ductility WWF has showed to be less prominent in structural slabs with higher levels of structural indeterminacy. The load-deflection curves of corner-supported slabs containing low ductility WWF are brittle, and the slabs have little ability to undergo plastic deformation at peak load.

p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석 (Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model)

  • 조진구;박진환
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach

  • Ali Faghfouri;Hamidreza Vosoughifar;Seyedehzeinab Hosseininejad
    • Smart Structures and Systems
    • /
    • 제31권6호
    • /
    • pp.545-559
    • /
    • 2023
  • Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.