• 제목/요약/키워드: two-way shear strength

검색결과 120건 처리시간 0.025초

Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates

  • An, Hong-Seok;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.166-171
    • /
    • 2011
  • PURPOSE. The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS. Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: tooth-colored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS. The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION. The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

Analyses of centrifuge modelling for artificially sensitive clay slopes

  • Park, Dong Soon
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.513-525
    • /
    • 2018
  • Slope stability of sensitive clayey soils is particularly important when subjected to strength loss and deformation. Except for progressive failure, for most sensitive and insensitive slopes, it is important to review the feasibility of conventional analysis methods based on peak strength since peak strength governs slope stability before yielding. In this study, as a part of efforts to understand the behavior of sensitive clay slopes, a total of 12 centrifuge tests were performed for artificially sensitive and insensitive clay slopes using San Francisco Bay Mud (PI = 50) and Yolo Loam (PI = 10). In terms of slope stability, the results were analyzed using the updated instability factor ($N_I$). $N_I$ using equivalent unit weight to cause a failure is in reasonable agreement shown in the Taylor's chart ($N_I$ ~ 5.5). In terms of dynamic deformation, it is shown that two-way sliding is a more accurate approach than conventional one-way sliding. Two-way sliding may relate to diffused shear surfaces. The outcome of this study is contributable to analyzing stability and deformation of steep sensitive clay slopes.

유지놀 처리된 상아질 표면의 상아질 접착제의 전단결합강도에 관한 연구 (SHEAR BOND STRENGTH OF DENTIN BONDING AGENTS ON DENTIN SURFACE TREATED WITH EUGENOL)

  • 유화성;최기운;최경규;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제25권4호
    • /
    • pp.550-560
    • /
    • 2000
  • In this study, shear bond strength of two bonding systems were measured and appearance of dentin surfaces were observed with SEM according to the storage time of eugenol on dentin surface, thus evaluated the effect of eugenol on bond strength of two dentin bonding systems. Control groups were directly bonded to dentin surface with One Step, Prime & Bond 2.1. Experimental groups were divided into experimental I and II according to dentin bonding agents. After eugenol application, dentin surfaces were bonded with One Step and Prime & Bond 2.1 according to the each storage time of immediately, 3min, 24hour, 48hour and 1week, and then control and experimental groups were filled with light cured composite resin(Z-100). After 24 hours water storage at $37^{\circ}C$, all samples were subjected to a shear load to fracture at a cross head 1.0mm/min with Instron universal testing machine(No. 4467). Etched dentin surface storaged for each time of immediately, 3min, 24hour, 48hour and 1 week after eugenol application were observed under Scanning Electron Microscope(Hitachi S-2300) at 20kvp. The data were evaluated statistically with two-way ANOVA and Tukey's HSD. The results were as follows; 1. Shear bond strengths were higher in control groups than in the experimental groups. 2. As storage time was increased after eugenol application, the shear bond strengths were decreased in experimental groups. 3. In experimental I, II the shear bond strengths were the lowest in which storage time was 1 week after eugenol application. 4. As storage time was increased after eugenol application, etched dentin surfaces showed obstructed dentinal tubule.

  • PDF

The effects of dentin bonding agent formulas on their polymerization quality, and together with tooth tissues on their microleakage and shear bond strength: an explorative 3-step experiment

  • Erfan, Mohmmad;Jafarzadeh-Kashi, Tahereh Sadat;Ghadiri, Malihe;Rakhshan, Vahid
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권5호
    • /
    • pp.333-345
    • /
    • 2014
  • PURPOSE. Bonding agents (BA) are the crucial weak link of composite restorations. Since the commercial materials' compositions are not disclosed, studies to formulize the optimum ratios of different components are of value. The aim of this study was to find a proper formula of BAs. MATERIALS AND METHODS. This explorative experimental in vitro study was composed of 4 different sets of extensive experiments. A commercial BA and 7 experimental formulas were compared in terms of degree of conversion (5 experimental formulas), shear bond strength, mode of failure, and microleakage (3 experimental formulas). Statistical analyses were performed (${\alpha}$=.05). The DC of selected formula was tested one year later. RESULTS. The two-way ANOVA indicated a significant difference between the shear bond strength (SBS) of two tissues (dentin vs. enamel, P=.0001) in a way that dentinal bonds were weaker. However, there was no difference between the four materials (P=.283). The adhesive mode of failure was predominant in all groups. No differences between the microleakage of the four materials at occlusal (P=.788) or gingival (P=.508) sites were detected (Kruskal-Wallis). The Mann-Whitney U test showed a significant difference between the microleakage of all materials (3 experimental formulas and a commercial material) together at the occlusal site versus the gingival site (P=.041). CONCLUSION. A formula with 62% bisphenol A-glycidyl methacrylate (Bis-GMA), 37% hydroxy ethyl methacrylate (HEMA), 0.3% camphorquinone (CQ), and 0.7% dimethyl-para-toluidine (DMPT) seems a proper formula for mass production. The microleakage and SBS might be respectively higher and lower on dentin compared to enamel.

A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

  • Song, Minju;Shin, Yooseok;Park, Jeong-Won;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • 제40권1호
    • /
    • pp.30-36
    • /
    • 2015
  • Objectives: This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods: 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results: Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil $S^3$ Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions: Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

비니어 세라믹과 지르코니아 세라믹의 Push-Shear 결합강도 (Push-Shear Bond Strength of Veneering Ceramics and Zirconia Ceramic)

  • 안재석;노형록;이정환
    • 한국콘텐츠학회논문지
    • /
    • 제15권9호
    • /
    • pp.384-394
    • /
    • 2015
  • 본 연구에서는 원통형 지르코니아 코어에 다섯 종류의 지르코니아 비니어 세라믹을 축성하여 push-전단결합강도를 측정하고, 비니어 세라믹의 이축굽힘강도와 지르코니아 글라스 라이너 처리에 따른 전단결합강도 차이를 알아보고자 하였다. 지르코니아 비니어 세라믹은 piston-on-three-ball test로 이축굽힘강도를 측정하였고, 지르코니아 실린더 코어와 비니어 세라믹은 push-shear test로 결합강도를 측정하였으며, 결과값은 이원분산분석을 사용하여 분석하였다. 이축굽힘강도는 Cercon ceram kiss (CE)군에서 가장 높게 측정되었고 전단결합강도는 글라스 처리군과 Triceram(TR)군이 높게 측정 되었으며 Creation ZI(CR)군에서 가장 낮은 값이 측정 되었다. 실험군에서 지르코니아 라이너 처리군이 라이너 처리하지 않는 군보다 전단결합강도가 높게 나타났으며 통계적으로 유의한 차이를 보였다(P<0.05). 따라서 지르코니아 라이너 처리는 지르코니아와 비니어 세라믹의 결합강도를 향상시킬 수 있는 것으로 사료된다.

리튬디실리케이트 세라믹과 표면처리방법에 따른 라미네이트 베니어의 전단결합강도 비교 (Comparison of Shear Bonding Strength of Laminate Veneer by Lithium Disilicate Ceramics and Surface Treatment Methods)

  • 박상준;정인성
    • 대한치과기공학회지
    • /
    • 제41권3호
    • /
    • pp.177-185
    • /
    • 2019
  • Purpose: This study was to investigate the effect of three different surface treatments on the shear bond strength of lithium disilicate ceramics to enamel. Methods: Totally 60 lithium disilicate ceramic disc specimens were fabricated with IPS e.max press (Ivoclar Vivadent, Schaan, Liechtenstein) and Mazic Claro (Vericom, Korea). 30 specimens in each lithium disilicate ceramic were assigned to 3 groups of the each following surface treatment: 1) $50{\mu}m$ airborne particle abrasion+silane, 2) 9.5% hydroflouric acid etching (HF)+silane, 3) $50{\mu}m$ airborne particle abrasion+9.5% HF+silane. Lithium disilicate ceramic surfaces after surface treatments were AFM examined. The shear bond strength was measured in a universal testing machine at 0.5mm/min crosshead speed. All data were analyzed using a two-way ANOVA and Tukey's test(${\alpha}=0.05$). Results: The mean surface roughness of lithium disilicate ceramics ranged from $0.178{\mu}m$ to $0.441{\mu}m$. The mean shear bond strengths ranged from $23.81{\pm}2.78MPa$ to $33.99{\pm}4.85MPa$. Conclusion: 1. Mazic Claro showed higher shear bond strength than IPS e.max press at 3 different surface treatments, and no statistically significant was observed. 2. The shear bond strength of IPS e.max press was strongly enhanced as surface treated with $50{\mu}m$ airborne particle abrasion and 9.5% hydroflouric acid etching. And there was no statistical significance at the shear bond strength of Mazic Claro with surface treatments.

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.

Strategic Utilization of Fiber Reinforced UHSC in Slab-Column Connections

  • Yoon, Young-Soo;Lee, Joo-Ha;Lee, Seung-Hoon
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.79-82
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete from new and retrospective data. The parameters investigated were the ' puddling ' of ultra-high-strength-fiber-reinforced concrete and the use of high-strength concrete in the slab. The effects of these parameters on the punching shear capacity, negative moment cracking, and stiffness of the two-way slab specimens are investigated. Furthermore, the ACI Code (2002), the CSA Standard (1994), the BS Standard (1985) and the CEB-FIP Code (1990) predictions are compared to the experimental results obtained from some slab-column connections tested in this experiment and those tested by other investigators. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling and of the use of high-strength concrete are demonstrated. It is also concluded that the punching shear strength of slab-column connections is a function of the flexural reinforcement ratio.

  • PDF