DOI QR코드

DOI QR Code

Push-Shear Bond Strength of Veneering Ceramics and Zirconia Ceramic

비니어 세라믹과 지르코니아 세라믹의 Push-Shear 결합강도

  • Received : 2015.04.21
  • Accepted : 2015.06.12
  • Published : 2015.09.28

Abstract

The purpose of this study was to evaluate the push-shear bond strength between five commercial zirconia veneering ceramics and zirconia core cylinder, and to investigate the effect of biaxial flexural strength and zirconia liner glass treatments. The biaxial flexural strengths of the veneering ceramics were evaluated by a piston-on-three-ball test. The bond strengths between the Y-TZP cylinder and zirconia veneering ceramics were evaluated using the push-shear bond strength test. The data was analyzed using two-way ANOVA and Scheffe's test. The biaxial flexural strength of Cercon ceram kiss (CE) was higher than those of the other groups. The glass-treated and Triceram zirconia groups showed the highest value and the Creation ZI(CR) showed the lowest. In all groups, the liner glass treatment groups showed significantly higher push-shear bond strength than those without(P<0.05). The liner glass treatments of zirconia can improve the bond strength between the zirconia ceramic core and veneering ceramics.

본 연구에서는 원통형 지르코니아 코어에 다섯 종류의 지르코니아 비니어 세라믹을 축성하여 push-전단결합강도를 측정하고, 비니어 세라믹의 이축굽힘강도와 지르코니아 글라스 라이너 처리에 따른 전단결합강도 차이를 알아보고자 하였다. 지르코니아 비니어 세라믹은 piston-on-three-ball test로 이축굽힘강도를 측정하였고, 지르코니아 실린더 코어와 비니어 세라믹은 push-shear test로 결합강도를 측정하였으며, 결과값은 이원분산분석을 사용하여 분석하였다. 이축굽힘강도는 Cercon ceram kiss (CE)군에서 가장 높게 측정되었고 전단결합강도는 글라스 처리군과 Triceram(TR)군이 높게 측정 되었으며 Creation ZI(CR)군에서 가장 낮은 값이 측정 되었다. 실험군에서 지르코니아 라이너 처리군이 라이너 처리하지 않는 군보다 전단결합강도가 높게 나타났으며 통계적으로 유의한 차이를 보였다(P<0.05). 따라서 지르코니아 라이너 처리는 지르코니아와 비니어 세라믹의 결합강도를 향상시킬 수 있는 것으로 사료된다.

Keywords

References

  1. G. Isgro, P. Pallav, J. M. van der Zel, and A. J. Feilze, "The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic", J Prosthet Dent, Vol.90, No.5, pp.465-73, 2003. https://doi.org/10.1016/j.prosdent.2003.08.003
  2. M. Guazzato, T. R Walton, W. Franklin, G. Davis, C. Bohl, and I. Klineberg, "Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures", Australian Dental Journal, Vol.55, No.3, pp.306-310, 2010. https://doi.org/10.1111/j.1834-7819.2010.01239.x
  3. M. V. Swain, "Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures", Acta Biomaterials, Vol.55, No.5, pp.1668-1677, 2009.
  4. M. Tholey, N. Thiel, S. Schindler, S. Rues, and J. Lenz, "Temperaturgradienten in Kronen mit Gerusten aus Zirkoniumdioxid (Y-TZP). Quintessenz der Zahntechnik", Vol.36, No.9, pp.1184-1198, 2010.
  5. A. Sundh and G. Sjogren, "Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering", Dent Mater, Vol.22, No.8, pp.778-784, 2006. https://doi.org/10.1016/j.dental.2005.11.006
  6. R. P. Christensen and B. J. Ploeger, "A clinical comparison of zirconia, metal and alumina fixed-prosthesis frameworks veneered with layered or pressed ceramic: a three-year report," Journal of the American Dental Association, Vol.141, No.11, pp.1317-1329, 2010. https://doi.org/10.14219/jada.archive.2010.0076
  7. P. C. Guess, A Kulis, S. Witkowski, M. Wolkewitz, Y. Zhang, and J. R. Strub, "Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling", Dental Materials, Vol.24, No.11, pp.1556-1567, 2008. https://doi.org/10.1016/j.dental.2008.03.028
  8. N. Z. Fahmy, "Bond strength, microhardness, and core/veneer interface quality of an all-ceramic system", Journal of Prosthodontics, Vol.19, No.2, pp.95-102, 2010. https://doi.org/10.1111/j.1532-849X.2009.00540.x
  9. ASTM Standard F394-78, STM Annual Book of Standards, Vol. 15.02, Section 16. American Society for Testing and Materials, Philadelphia, PA, pp.466-490, 1996.
  10. C. W. Fairhust, P. E. Lockwood, R. D. Ringle, and W. O. Thompson, "The effect of glaze on porcelain strength", Dent Mater, Vol.8, No.3, pp.203-207, 1992. https://doi.org/10.1016/0109-5641(92)90084-P
  11. J. S. Shell and J. P. Neilsen, "Study of the bond between gold alloys and porcelain", J Dent Res, Vol.41, pp.1424-1437, 1962. https://doi.org/10.1177/00220345620410062101
  12. M. Dundar, M. Ozcan, B. Gokce, E. Comlekoglu, F. Leite, and L. F. Valandro, "Comparison of two bond strength testing methodologies for bilayered all-ceramics", Dent Mater, Vol.23, No.5, pp.630-636, 2007. https://doi.org/10.1016/j.dental.2006.05.004
  13. J. S. Shell and J. P. Neilsen, "Study of bond strength of dental porcelain fired to metal", Dent Res, Vol.23, No.5, pp.32-36, 1996.
  14. D. H. Anthony, A. P. Burnett, and D. L. Smith, "Brooks MS. Shear test for measuring bonding in cast gold alloy-porcelain composites", J Dent Res, Vol.49, No.15, pp.27-33, 1970. https://doi.org/10.1177/00220345700490012601
  15. H. M. Al-Dohan, P. Yaman, J. B. Dennison, M. E. Razzoog, and B. R. Lang, "Shear strength of core-veneer interface in bi-layered ceramics", J Prosthet Dent, Vol.91, No.4, pp.349-355, 2004. https://doi.org/10.1016/j.prosdent.2004.02.009
  16. J. R. Kelly, J. A. Tesk, and J. A. Sorensen, "Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling", J Dent Res, Vol.74, No.6, pp.1253-1258, 1995. https://doi.org/10.1177/00220345950740060301
  17. M. N. Aboushelib, C. J. Kleverlaan, and A. J. Feilzer, "Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics," Dent Mater, Vol.22, No.9, pp.857-863, 2006. https://doi.org/10.1016/j.dental.2005.11.014
  18. M. N. Aboushelib, A. J. Feilzer, and C. J. Kleverlaan, "Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach", Dental Materials, Vol.25, No.3, pp.383-391, 2009. https://doi.org/10.1016/j.dental.2008.09.001
  19. S. M. Weger and M. Kern, "Long-term resin bond strength to zirconia ceramic", J Adhes Dent, Vol.2, No.2, pp.139-147, 2000.
  20. M. Cheng, W. Chen, and K. R. Sridhar, "Biaxial flexural strength distribution of thin ceramic substrates with surface defects", International Journal of Solid and Structure. Vol.40, No.9, pp.2249-2266, 2003. https://doi.org/10.1016/S0020-7683(03)00052-0
  21. S. Ban and K. J. Anusavice, "Inflence of test method on failure stress of brittle dental materials", J Dent Res, Vol.69, No.12, pp.1791-1799, 1990. https://doi.org/10.1177/00220345900690120201
  22. J. B. Wachtman, W. Capps, and J. Mandel, "Bi-axial flexure tests of ceramic substrates", J Mater, Vol.7, No.2, pp.188-194, 1972.
  23. J. F. McCabe, and A. W. Walls, "The treatment of results for tensile bond strength testing", J Dent Res, Vol.14, No.4, pp.165-168, 1986. https://doi.org/10.1016/0300-5712(86)90019-9
  24. K. J. Anusavice, C. Shen, B. Vermost, and B. Chow, "Strengthening of porcelain by ion exchange subsequent to thermal tempering", Dent Mater, Vol.8, No.3, pp.149-152, 1992. https://doi.org/10.1016/0109-5641(92)90072-K
  25. ASTM C 1499-03. Standard test method monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature obsolete, America: American society for testing materials, 1999.
  26. J. P. Moffa, A. A. Lugassy, A. D. Guckes, and L. Gettleman, "An evaluation of nonprecious alloys for use with porcelain veneers. Part I. Physical properties", The Journal of Prosthetic Dentistry, Vol.30, No.1, pp.424-431, 1973. https://doi.org/10.1016/0022-3913(73)90164-9
  27. M. N. Aboushelib, N. de Jager, C. J. Kleverlaan, and A. J. Feilzer, "Microtensile bond strength of different components of core veneered all-ceramic restorations", Dent mater, Vol.21, No.10, pp.984-991, 2005. https://doi.org/10.1016/j.dental.2005.03.013
  28. T. Derand, M. Molin, and K. Kvam, "Bond strength of composite luting cement to zirconia ceramic surfaces", Dent Mater, Vol.21, No.12, pp.1158-1162, 2005. https://doi.org/10.1016/j.dental.2005.02.005
  29. I. Denry and J. R. Kelly, "State of the art of zirconia for dental applications", Dental materials, Vol.24, No.3, pp.299-307, 2008. https://doi.org/10.1016/j.dental.2007.05.007
  30. E. Tsalouchou, M. J. Cattell, J. C. Knowles, P. Pittayachawan, and A. McDonald, "Fatigue and fracture properties of yttria partially stabilized zirconia crown systems", Dent Mater, Vol.24, No.3, pp.308-318, 2008. https://doi.org/10.1016/j.dental.2007.05.011
  31. H. M. Ashkanani, A. J. Raigrodski, B. D. Flinn, H. Heindl, and L. A. Mancl, "Flexural and shear strengths of Zr$O_2$ and a high-noble alloy bonded to their corresponding porcelains", J Prosthet Dent, Vol.100, No.4, pp.274-284, 2008. https://doi.org/10.1016/S0022-3913(08)60206-1
  32. B. Kim, Y. Zhang, M. Pines, and V. P. Thompson, "Fracture of porcelain-veneered structures in fatigue", J Dent Res, Vol.86, No.2, pp.142-146, 2007. https://doi.org/10.1177/154405910708600207
  33. P. Benetti, F. Pelogia, L. F. Valandro, M. A. Bottino, and A. D. Bona, "The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system", Dental Materials, Vol.27, No.9, pp.948-953, 2011. https://doi.org/10.1016/j.dental.2011.05.009