• Title/Summary/Keyword: two-point loading

Search Result 270, Processing Time 0.023 seconds

Energy dissipation response of brick masonry under cyclic compressive loading

  • Senthivel, R.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.405-422
    • /
    • 2003
  • Scaled brick masonry panels were tested under cyclic unialxial compression loading to evaluate its deformation characteristics. An envelope stress - strain curves, a common point curves and stability point curves were obtained for various cyclic test conditions. Loops of the stress-strain hysteresis were used to determine the energy dissipation for each cycle. Empirical expressions were proposed for the relations between energy dissipation and envelope and residual strains. These relations indicated that the decay of masonry strength starts at about two-third of peak stress.

Perfomance of Lattice Girder on Loading Point in Laboratory Test (실내평가기법에서 하중재하지점에 따른 레티스거더의 성능분석)

  • Kim, Dong-Gyou;Lee, Sung-Ho;Choi, Young-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1526-1531
    • /
    • 2008
  • The objective of this study is to evaluate the loading capacity of lattice girder according to loading position. 3-point flexible strength tests were performed on three types of lattice girder, such as LG-$50{\times}20{\times}30$, LG-$70{\times}20{\times}30$, and LG-$95{\times}22{\times}32$, mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%.

  • PDF

Force-Deformation Characteristics of the Fruit Flesh (과실(果實)의 힘-변형(變形) 특성(特性))

  • Kim, M.S.;Park, J.M.;Choi, D.S.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.2
    • /
    • pp.156-170
    • /
    • 1992
  • The force-deformation relationship gives the basic physical properties of the fruits such as the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point. These informations are very important to study the stress-strain relationships of the fruits. This study was conducted to analyze those physical properties according to the sampling position of the fruits, and to determine the bioyield point, the rupture point, and the deformations at the bioyield point and the rupture point of the fruits for two different storage conditions(low temperature and normal temperature) and the storage period, and to investigate the effect of loading rate on those physical properties, the hysteresis on the loading-unloading condition and the degree of elasticity of the fruits. The results of the study were as follows : 1. The physical properties(BS, US, BD, and RD) of the test specimen selected from the different sampling positions were quite different. The values of the physical properties were shown smallest ones at the cheek of the fruits, and the statistical test results of the physical properties between the cheek from the other two positions of the fruits showed that there were significant difference at the 1 % level between them. 2. The effect of loading rate on the physical properties of the fruits was relatively large, all the considered physical propertis of the fruits increased with the loading rate, but the hysteresis loss decreased with it. 3. The physical properties of the fruits according to the storage conditions and period showed different, and the bioyield deformation and the rupture deformation of the fruits increased with the storage period, but the bioyield strength and the ultimate strength of the fruits decreased with it. The effect of the storage conditions on the those physical properties showed that the normal temperature storage condition was a little higher than the low temperature storage condition. 4. As a whole, it was shown that the bioyield strength and the ultimate strength of the pear decreased a little faster than those of the apple, and the bioyield deformation and rupture deformation of the pear increased a little faster than those of apple at the two storage conditions.

  • PDF

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

Predictive Relationships of the Nonpoint Source Pollutant Loads with Stormwater Runoff Volumes based on the Various Regression Analyses (다양한 회귀분석을 통한 강우유출용적에 따른 비점오염부하량 예측방안)

  • Shin, Jiwoong;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • This study analyzes the correlations between non-point sources and runoff to estimate non-point sources for effective management. From the monitoring results, the correlation factors among pollutant mass loading, EMC, total runoff volume and average flow are calculated. And using correlation factors, the most related two constituents are determined. Also the most appropriate regression between two constituents are determined. Pollutant mass loading and total runoff volume has the highest correlation. Also, compound regression is found to be the most appropriate regression. This shows that pollutant mass loading increases as total runoff volume increases. It is not continuous increase but has some pattern.

An Experimental Study on Fracture Energy of Plain Concrete

  • Lee, Jaeha;Lopez, Maria M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.129-139
    • /
    • 2014
  • In this study, the concrete fracture energy was obtained using the three point notched beam test method developed by Hillerborg et al. (Cem Concr Res 6(6):773-782, 1976). A total of 12 notched concrete beams were tested under two different loading conditions: constant stroke control and constant crack mouth opening displacement (CMOD) control. Despite individual fracture energies obtained from the two different loading conditions showing some variation, the average fracture energy from both loading conditions was very similar. Furthermore, the results obtained support the idea that a far tail constant "A" could change the true fracture energy by up to 11 %, if it is calculated using CMOD instead of LVDT. The far tail constant "A" is determined using a least squares fit onto a straight line according to Elices et al. (Mater Struct 25(148):212-218, 1992) and RILEM report (2007). It was also observed that the selection of the end point can produce variations of the true fracture energy. The end point indicates the point in the experiment at which to stop. An end point of 2 mm has been recommended, however, in this study other end points were also considered. The final form of the bilinear softening curve was determined based on Elices and Guinea's methods (1992, 1994) and RILEM report (2007). This paper proposes a bilinear stress-crack opening displacement curve according to test results as well as the CEB-FIP model code.

A Study on the Relationship between Cyanobacteria and Environmental Factors in Yeongcheon Lake (영천호에서 남조류 발생과 환경요인의 관련성 연구)

  • Lee, Hyeon-Mi;Shin, Ra-Young;Lee, Jung-Ho;Park, Jong-geun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics and correlations of the Yeongcheon Lake in order to reduce the occurrence of harmful cyanobacteria. In this study, we investigated the water quality and phytoplankton of the lake from May to November in 2017. Correlation and data mining analyses were performed to analyze the relationship between the two factors. The water temperature was lowest at the point where the Yeongcheon Lake inflow occurs at Imha Lake. It was highest at the point where the outflow occurs to Angye Lake. The pH was also highest at the outflow point, but in the case of DO, it was highest at the midpoint between the inflow and outflow. The main cyanobacteria that emerged during the study period were Oscillatorialimosa, Microcysti saeruginosa and Aphanizomenon flos-aquae. As a result of correlation analysis, the water temperature, inflow, COD loading, TOC loading at the inflow point of the Yeongcheon Lake were the items that were related to the harmful cyanobacteria. The data mining analysis indicated that the TP loading and harmful cyanobacteria in the inflow point of the Yeongcheon Lake were influential on the detrimental cyanobacteria in the Yeongcheon Lake outflow point. When the TP loading was less than 39.0 kg/day at the inflow site, it was expected that the amount of harmful cyanobacteria could be maintained below 10,000 cells/mL.

Development of a laboratory testing method for evaluating the loading capability of lattice girder (격자지보재(Lattice Girder)의 실내성능평가기법 개발)

  • Kim, Dong-Gyou;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.371-382
    • /
    • 2008
  • The objective of this study is to develop the laboratory testing method for evaluating the loading capacity of lattice girder used for support in tunnel structure. 3-point flexible strength test and 4-point flexible strength test were performed on three types of lattice girder, such as $LG-50{\times}20{\times}30$, $LG-70{\times}20{\times}30$, and $LG-95{\times}22{\times}32$, mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. The loading distribution in the lattice girder was analyzed by means of strains measured by strain gauges attached on chords and diagonal bars. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%. In 4-point flexible strength test, the average of maximum flexible strength according to loading position was almost no difference. The difference between the average of maximum flexible strengths obtained from 3-point and 4-point flexible strength tests was from 13.56 to 31.55%. The load applied on the lattice girder was concentrated to the main chord in 3-point flexible strength test. The load applied on the lattice girder in 4-point flexible strength test was distributed to three chords and diagonal bars.

  • PDF

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.