• Title/Summary/Keyword: two-phase system

Search Result 2,675, Processing Time 0.035 seconds

Reduction of the Unbalanced Three Phase Input Current by Variable Notch Filter in Active AC Electronic Load (가변 노치필터에 의한 능동형 AC 전자부하의 3상 전류 불평형 저감)

  • Kim, Do-Yun;Lee, Jung-Hyo;Lee, Yong-Seok;Jung, Doo-Yong;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2012
  • In this paper, the test bed using three-phase PWM converter connected with single phase inverter in series is set up to configure an active AC electric load. Since the two topologies, three-phase PWM converter and single-phase inverter, can be operated bidirectionally, the system not only re-generates surplus power to grid but also prevents power dissipation. However, the construction of system has a drawback. That is, ripple components two times of inverter operation frequency occur at DC-Link due to cascade connection, it can be cause of three phase unbalance Since the operational characteristic of the active AC electric load, the power frequency entered into the electric load can be varied, and the ripple of DC-Link is changed as well. In this paper, the three-phase PWM converter using a variable notch filter is proposed, and the reduction of three-phase current unbalance is presented. the validity of the proposed PWM converter using a variable notch filter is verified by the simulation and experimental results.

Split-bolus CT urography with synchronous nephrographic and excretory phase in dogs: comparison of image quality with three-phase CT urography and optimal allocation ratio of contrast medium

  • Je, Hyejin;Lee, Sang-Kwon;Jung, Jin-Woo;Jang, Youjung;Chhoey, Saran;Choi, Jihye
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.55.1-55.11
    • /
    • 2020
  • Background: Computed tomography urography (CTU), based on the excretion of contrast medium after its injection, allows visualization of the renal parenchyma and the renal collecting system. Objectives: To determine the optimal contrast medium dose allocation ratio to apply in split-bolus CTU in dogs. Methods: This prospective, experimental, exploratory study used 8 beagles. In 3-phase CTU, unenhanced-, nephrographic-, and excretory-phase images were obtained with a single injection of 600 mg iodine/kg iohexol. In split-bolus CTU, two different contrast medium allocation ratios (30% and 70% for split CTU 1; 50% and 50% for split CTU 2) were used. Unenhanced phase image and a synchronous nephrographic-excretory phase image were acquired. Results: Although the attenuation of the renal parenchyma was significantly lower when using both split CTUs than the 3-phase CTU, based on qualitative evaluation, the visualization score of the renal parenchyma of split CTU 1 was as high as that of the 3-phase CTU, whereas the split CTU 2 score was significantly lower than those of the two others. Artifacts were not apparent, regardless of CTU protocol. The diameter and opacification of the ureter in both split CTUs were not significantly different from those using 3-phase CTU. Conclusions: Split-bolus CTU with a contrast medium allocation ratio of 30% and 70% is feasible for evaluating the urinary system and allows sufficient enhancement of the renal parenchyma and appropriate distention and opacification of the ureter, with similar image quality to 3-phase CTU in healthy dogs. Split-bolus CTU has the advantages of reducing radiation exposure and the number of CT images needed for interpretation.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Effects of Phase Feeding and Sugar Beet Pulp on Growth Performance, Nutrient Digestibility, Blood Urea Nitrogen, Nutrient Excretion and Carcass Characteristics in Finishing Pigs

  • Ko, T.G.;Lee, J.H.;Kim, B.G.;Min, T.S.;Cho, S.B.;Han, In K.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1150-1157
    • /
    • 2004
  • This experiment was conducted to investigate effects of phase feeding and sugar beet pulp (SBP) on growth performance, nutrient digestibility, nitrogen excretion, blood urea nitrogen (BUN) concentration and carcass characteristics in finishing pigs. A total of 128 pigs were allotted at 53.9 kg BW to 8 replicates in a 2$\times$2 factorial arrangement in a randomized complete block (RCB) design. The first factor was phase feeding (2 or 3 phase feeding) and SBP (SBP: 0% or 10%) was the second factor. Ten percent SBP supplement groups showed lower average daily feed intake (ADFI) than 0% SBP supplement groups (p<0.05). However, there were no significant difference in average daily gain (ADG) and feed:gain ratio among treatments during overall experimental period. Nutrient digestibility was not affected by phase feeding or SBP supplementation. Urinary nitrogen excretion in 10% SBP supplement group was lower than that in 0% SBP supplement group (p<0.05) and total nitrogen excretion was lower in SBP supplement group than in the group without SBP. Urinary and total nitrogen were numerically decreased in three phase feeding compared to two phase feeding. The BUN concentration in three phase feeding groups was lower than two phase feeding groups at 47 and 63 day (p<0.05). Consequently, results of this experiment demonstrated that three phase feeding was more acceptable than two phase feeding for finishing pigs. And sugar beet pulp could be supplemented in finishing pig diet for decreasing urinary nitrogen excretion without retardation in growth performance of pigs.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Phase Noise Reduction of Microwave HEMT Oscillators Using a Dielectric Resonator Coupled by a High Impedance Inverter

  • Lee, Moon-Que;Ryu, Keun-Kwan;Yom, In-Bok
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.199-201
    • /
    • 2001
  • The phase noise reduction in a configuration of the HEMT oscillator with a dielectric resonator coupled by a quarter-wavelength impedance inverter is investigated. Two HEMT oscillators for a satellite payload system are manufactured in the same configuration except for the coupling configuration of the dielectric resonator (DR) in order to empirically demonstrate the phase noise reduction. Experimental result shows that a phase noise reduction by 14 dB can be enhanced by increasing the characteristic impedance of a coupling microstrip impedance inverter.

  • PDF

Consideration about phase error of the MTI system (변형 삼각간섭계에서의 위상오차에 관한 고찰)

  • Kim, Soo-Gil;Ko, Myung-Sook
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.169-171
    • /
    • 2007
  • We need two operation modes to obtain the complex hologram without bias and the conjugate image in the modified triangular interferometer(MTI). To solve the problem, we proposed the optimized MTI with one wave plate, which can obtain cosine and sine functions by the combination of one wave plate and one linear polarizer. In the extraction of phase term using the combination of polarization components, the phase error occurs, and we simulated such potential phase errors in the optimized MTI.

  • PDF

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Power Assist Control for Walking Aid by HAL Based on Phase Sequence and EMG

  • Lee, Suwoong;Yoshiyuki Sankai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.1-46
    • /
    • 2001
  • This paper describes a control method of hybrid power assistive system for lower body, HAL, with the techniques of Phase Sequence and the application of EMG. Our objective is to attain the power assist control of motion in the lower body effectively with these two methods. The Phase Sequence which performs basic motion controls of HAL is the method that a motion, the Task, is accomplished by dividing each motion into the unit named Phase and ...

  • PDF