• Title/Summary/Keyword: two-loop control

Search Result 684, Processing Time 0.025 seconds

Design of Position Controller for Proportional Solenoid Valve Using System Identification (시스템 식별을 이용한 비례솔레노이드밸브 위치제어기 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.23-31
    • /
    • 2010
  • As the analysis and design technologies for electro-magnetic actuation has advanced over the years, proportional solenoid valve is gaining acceptance in wide range of industrial and commercial applications because of its superior characteristics over the conventional AOV or MOV, such as improved performance, reduced maintenance costs. This research deals with the position controller design of two-stage flow control solenoid valve. Investigation of steady-state characteristics and dynamic model identification for pilot disc is performed. Least square method to minimize the error magnitude of frequency response between the closed-loop and target system is applied to the design of PI-controller gains. From the experiments of step and frequency response, it is concluded that the controller meets the performance specification of target system, which verifies the usefulness of controller design method for proportional solenoid valve.

  • PDF

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

A control system for dual-axis linear motor

  • Uchida, Yoshiyuki;Nohira, Shigemitsu;Seike, Yoshiyuki;Shingu, Hiroyasu;Sumi, Tetsuo;Furuhashi, Hideo;Yamada, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.340-343
    • /
    • 1992
  • Fundamental positioning characteristics of a dual-axis Sawyer linear motor are described. The Sawyer motor is capable of high positional accuracy. An electronic control unit of the motor whose velocity is proportional to the frequency of the electric current was produced in our laboratory. The positioning system was constructed using two Sawyer motors, an air bearings suspension unit and an electronic control unit. The stable motion of the motor was confirmed on the open loop operation. The adjustable operating conditions were the live load of 1 kg, the maximum acceleration of 1.2G and the maximum velocity of 350 mm/s. Absolute positioning accuracy was improved within .+-.5.mu.m, on microstep operating conditions of dividing one pitch of 508.mu.m into 508 steps. The following two conclusions were obtained. An accelerating-cruising-decelerating control is effective for reduction in the travel time required. Also, microstep operation is effective for improving the resolution of position.

  • PDF

Droop Control Method for Circulating Current Reduction in Parallel Operation of BESS (BESS의 병렬운전 시 발생되는 순환 전류 저감을 위한 드룹 제어 기법)

  • Sin, Eun-Suk;Kim, Hyun-Jun;Yang, Won-Mo;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.708-717
    • /
    • 2015
  • This paper proposes a new reduction scheme of circulating current when two units of BESS (Battery Energy Storage System) are operated in parallel with conventional droop control. In case of using conventional droop, the terminal voltage of each BESS are not equal due to the unequal line impedance, which causes the circulating current. The operation performance of BESS is critically dependant on the circulating current because it increases system losses which causes the increasement of required system rating. This paper introduces a new reduction scheme of circulating current in which the terminal voltage difference of each BESS is compensated by adding feed-forward path of line voltage drop to the droop control. The feasibility of proposed scheme was first verified by computer simulations with PSCAD/EMTDC software. After then a hardware prototype with 5kW rating was built in the lab and many experiments were carried out. The experimental results were compared with the simulation results to confirm the feasibility of proposed scheme. Two parallel operating BESS with proposed scheme shows more accurate performance to suppress the circulating current than those with the conventional droop control.

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

Stabilizing controllers for plants with perturbations

  • Nakamura, Tomio;Obinata, Goro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.366-371
    • /
    • 1993
  • This paper gives a convenient parameterization for the clas of all stabilizing controllers in the presence of plant perturbation. The perturbations are constrained in such class as plants are stabilizable by a nominal controller. By using the controller stabilizing a given plant with perturbation, we can obtain a parametrization of all stable closed-loop transfer functions, which are affine in the free parameter of the controller. It is easy to extend the controller to the case of a two-degree-of-freedom controller.

  • PDF

Development of a simplified pole-placement design using swtching dynamics (스위칭 다이나믹을 이용한 단순화된 극점 배치 기법의 개발)

  • 박귀태;김동식;서삼준;서호준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.947-952
    • /
    • 1993
  • A simplified pole-placement design method is developed by analysing dynamic characteristics of the switching dynamics. Unlike the design procedure of conventional pole-placement, in the proposed method, overall state-space is directly decomposed into two invariant subspaces by the projection operator which is defined in the equivalent system, and then the closed-loop poles are assigned to each subspace independently. Hence, computations for state-feedback gain matrix are easy and simple.

  • PDF

Dynamic Stability of Automated Guideway Transit (AGT) Vehicles (AGT차량시스템의 동적 안정성)

  • 송창민;이우식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.282-291
    • /
    • 2000
  • In this paper, the dynamics of automated guideway transit vehicles with rubber tires are studied. Two different AGT models are considered: the bogie system and the steering system . It is found that the bogie system is stable at all possible operating speeds, whereas it is not true fur the steering system. To investigate the dynamic stability of steering systems, the critical speeds are investigated and the dynamics of the closed-loop steering control system are numerically simulated.

  • PDF

Optimal output feedback design for discrete large scale systems with two time-scale separation properties

  • Jin, Jong-Sam;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.203-208
    • /
    • 1987
  • Design problem of output feedback controllers for discrete large scale systems using simplified model is investigated. It is shown that neglecting fast modes does not generally guarantee the stability of the closed loop system. In this paper, the design procedure is proposed to stabilize the system by minimizing a quadratic cost function for the simplified model and a measure of stability for the neglected fast model.

  • PDF

Buck Converter analysis and controller design considering parasitic resistance of inductor and capacitor (인덕터, 커패시터의 기생저항을 고려한 Buck Converter 해석 및 제어기 설계)

  • Lee, Kyu-Min;Kim, Il-Song
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.487-488
    • /
    • 2019
  • 본 연구는 인덕터, 커패시터의 기생저항을 고려한 Buck Converter의 회로 해석 및 Two Loop Control 방법의 제어기 설계를 제안한다. 일반적인 Buck Converter의 회로 및 제어기 설계에서는 인덕터, 커패시터의 기생저항의 값이 작아 0으로 간주한다. 본 논문에서는 인덕터와 커패시터의 기생저항을 고려한 회로를 수학적으로 해석한 뒤 Matlab SISOTOOL을 이용하여 전압 및 전류 제어기를 설계하고 PSIM을 통해 회로를 구성하여 시뮬레이션을 통해 검증함으로써 일반적인 설계보다 정확성을 가진 설계방법을 제안한다.

  • PDF