• 제목/요약/키워드: two-loop control

검색결과 683건 처리시간 0.024초

Pole assignment for three-dimensional systems using two-dimensional dynamic compensators

  • Kawakami, Atsushi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1135-1138
    • /
    • 1990
  • In this paper, we study the pole assignment problem for three-dimensional systems. We transform the denominator of transfer functions of the closed-loop system into the product of three stable one-dimensional polynomials, by performing two-dimensional dynamical feedback and input transformation on the given three-dimensional systems. In the next, we consider the possibility that these two-dimensional dynamic compensators are realizable, thoroughly, and propose the counter-measure in case that they are not realizable. And, we obtain the conditions so that the closed-loop three-dimensional systems are stable. Moreover, we calculate the dynamical dimension which is necessary for the pole assigntmnt, and suggest the pole assignmnt method with the lowest dynamical dimnsion.

  • PDF

CPL의 운전에 미치는 레저버의 영향에 대한 실험적 연구 (Experimental Study of the Effect of the Reservoir on CPL Operation)

  • 황형진;정욱철;이진호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2033-2038
    • /
    • 2008
  • The CPLs(capillary pumped loops) are two phase heat transfer devices which enable active control of operating temperature of heat absorbing elements(or evaporators). Although the CPLs gain increasing interests as promising heat transfer devices for future missions such as spacecraft and commercial applications, their intrinsic complexity in operating principles makes the widespread use of these devices difficult. The key element and main cause of this complexity in operating principles is the two phase hydrodynamic accumulator or reservoir which controls the saturation state of the remaining loop and, particularly for the CPLs, it is separated from the evaporator. Thus, in this study, the operating characteristics of the CPL is investigated experimentally and theoretically. Mainly focusing on the role of reservoir the thermodynamic operating principle is examined first and the experimentally obtained steady state and transient state operating characteristics are discussed in detail.

  • PDF

Identification of the Closed Loop Systems using the Signal Compression Method

  • Toshitaka UMEMOTO;I, Tomoharu-Do;Shoichiro FUJISAWA;Takeo YOSHIDA
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.318-322
    • /
    • 1998
  • An Electro Magnetic Suspension System, which has two floating masses connected with springs and dampers, can not keep its equilibrium when it is solved as an ordinary quartic mathematical model. So, a two dimensional con-troller, designed with quadratic mathematical model assuming the two mass model to be a rigid body, was used. As the result, the system floated stably. Therefore, we measured the transfer performances of this closed loop system contained this controller using the compression signal method proposed by N.Aoshima and identified the parameters of this system. Finally, we compared these parameters with the computing results of quartic mathematical model.

  • PDF

회전자 바의 표피효과를 이용한 벡터제어용 유도전동기의 정지형 상수추정 (Parameter Identification of Vector-Controlled Induction Motor using Skin Effect of Rotor Bars at Standstill)

  • 권영수;문상호;이정흠;권병기;최창호;석줄기
    • 전력전자학회논문지
    • /
    • 제13권6호
    • /
    • pp.403-410
    • /
    • 2008
  • 본 논문에서는 벡터제어에 필요한 유도전동기의 상수를 정지 상태에서 부가적인 신호 주입을 이용하여 추정하는 방법을 제안하였다. 농형 유도전동기 회전자 바의 표피효과를 수학적으로 모델링을 하고 분석하였다. 상수 추정을 위해 정지 상태에서 두 가지의 서로 다른 주파수의 신호를 주입한다. 전동기의 초기 상수를 알지 못하므로 개-루프 전압 주입방법 대신 폐-루프 전류제어 방법을 이용한다. 이 방법은 전기적 사고를 미리 방지할 수 있으므로 개-루프 전압 주입방법 보다 안전하다. 그리고 유도전동기의 상수 추정에 심각한 영향을 주는 위상지연효과를 보상하기 위한 오프라인 시험방법을 제안하였다. 그리고 제안된 상수 추정 방법의 타당성을 증명하기 위해 세 가지 용량의 유도전동기에 대해 실험을 수행하였다.

최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어 (Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault)

  • 박건;김진호;강용철
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

An Adaptive Transmission Power Control Algorithm for Wearable Healthcare Systems Based on Variations in the Body Conditions

  • Lee, Woosik;Kim, Namgi;Lee, Byoung-Dai
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.593-603
    • /
    • 2019
  • In wearable healthcare systems, sensor devices can be deployed in places around the human body such as the stomach, back, arms, and legs. The sensors use tiny batteries, which have limited resources, and old sensor batteries must be replaced with new batteries. It is difficult to deploy sensor devices directly into the human body. Therefore, instead of replacing sensor batteries, increasing the lifetime of sensor devices is more efficient. A transmission power control (TPC) algorithm is a representative technique to increase the lifetime of sensor devices. Sensor devices using a TPC algorithm control their transmission power level (TPL) to reduce battery energy consumption. The TPC algorithm operates on a closed-loop mechanism that consists of two parts, such as sensor and sink devices. Most previous research considered only the sink part of devices in the closed-loop. If we consider both the sensor and sink parts of a closed-loop mechanism, sensor devices reduce energy consumption more than previous systems that only consider the sensor part. In this paper, we propose a new approach to consider both the sensor and sink as part of a closed-loop mechanism for efficient energy management of sensor devices. Our proposed approach judges the current channel condition based on the values of various body sensors. If the current channel is not optimal, sensor devices maintain their current TPL without communication to save the sensor's batteries. Otherwise, they find an optimal TPL. To compare performance with other TPC algorithms, we implemented a TPC algorithm and embedded it into sensor devices. Our experimental results show that our new algorithm is better than other TPC algorithms, such as linear, binary, hybrid, and ATPC.

Design and Experimental Validation of a Digital Predictive Controller for Variable-Speed Wind Turbine Systems

  • Babes, Badreddine;Rahmani, Lazhar;Chaoui, Abdelmadjid;Hamouda, Noureddine
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.232-241
    • /
    • 2017
  • Advanced control algorithms must be used to make wind power generation truly cost effective and reliable. In this study, we develop a new and simple control scheme that employs model predictive control (MPC), which is used in permanent magnet synchronous generators and grid-connected inverters. The proposed control law is based on two points, namely, MPC-based torque-current control loop is used for the generator-side converter to reach the maximum power point of the wind turbine, and MPC-based direct power control loop is used for the grid-side converter to satisfy the grid code and help improve system stability. Moreover, a simple prediction scheme is developed for the direct-drive wind energy conversion system (WECS) to reduce the computation burden for real-time applications. A small-scale WECS laboratory prototype is built and evaluated to verify the validity of the developed control methods. Acceptable results are obtained from the real-time implementation of the proposed MPC methods for WECS.

FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계 (Single-Chip Controller Design for Piezoelectric Actuators using FPGA)

  • 윤민호;박정근;강태삼
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

INTEGRATED DEVELOPMENT ENVIRONMENT FROM MODELING TO IMPLEMENTATION FOR AUTOMOTIVE REAL-TIME EMBEDDED CONTROL SYSTEMS

  • Ma, J.;Youn, J.;Shin, M.;Hwang, I.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.345-351
    • /
    • 2006
  • Software-In-the-Loop Simulation(SILS) and Rapid Control Prototyping(RCP) are proposed as an integrated development environment to support the development process from system design to implementation. SILS is an environment used to simulate control systems with temporal behavior. RCP offers seamless phase shift from design to implementation based on automatic code generation. There are several toolsets that support control system design and analysis. A few of these tools generate the control software automatically. However, most of these design toolsets do not cover temporal behavior which appears after implementation. In earlier toolsets, the design and the implementation of a control system are considered as two separate processes which mean the conventional development process is not connected strictly. SILS/RCP environments work under an identical platform and use the same representation for system modeling. An integrated SILS/RCP environment makes it possible to design controllers under conditions similar to real execution during off-line simulation and to realize controllers in the early design phase. SILS/RCP environments integrate the design and implementation phases which reduce the time-to-market and provide greater performance-assured design. The establishment of SILS/RCP and the practical design approaches are presented.

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.