• Title/Summary/Keyword: two-line element

Search Result 322, Processing Time 0.028 seconds

Investigation of the behavior of reinforced concrete hollow-core thick slabs

  • Al-Azzawi, Adel A.;Abed, Sadeq A.
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • This study presents investigation of the behavior of moderately thick reinforced concrete slabs having hollow cores with different parameters. The experimental part of this investigation includes testing eight specimens of solid and hollow-core slab models having (2.05 m) length, (0.6 m) width and (25 cm) thickness under two monotonic line loads. Load versus deflection was recorded during test at mid span and under load. Numerically, the finite element method is used to study the behavior of these reinforced concrete slabs by using ANSYS computer program. The specimens of slab models are modeled by using (SOLID65) element to represent concrete slabs and (LINK180) element to represent the steel bars as discrete axial members between concrete nodes. The finite element analysis has showed good agreement with the experimental results with difference of (4.71%-8.68%) in ultimate loads. A parametric study have been carried out by using ANSYS program to investigate the effects of concrete compressive strength, size and shape of core, type of applied load and effect of removing top steel reinforcement.

Elasto-Plastic Analysis of Plane Frame Structures using Timoshenko Beam Element (Timoshenko보 요소를 이용한 평면 뼈대구조의 탄-소성 해석)

  • 정동영;이정석;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.327-334
    • /
    • 2001
  • This paper presents a non-linear analysis procedure for plane frame structures by finite element formulation with assumptions of Timoshenko beam theory. Finite element displacement method based on Lagrangian formulation is used and two-noded and isoparametric line element is adopted to represent finite element model. The layered approach is used for the elasto-plastic analysis of the plane frame structures with rectangular and I cross sections. A load incremental method combined with the tangent stiffness and the initial stiffness methods for each load increment is used for the solution of non-linear equations. Numerical examples are presented to investigate the behavior and the accuracy of the elasto-plastic non-linear application and the results of this study are compared with other solutions using the concept of plastic hinge.

  • PDF

The Design of Rectangular Microstrip Patch Antenna Using The Ring Feed Line (링 급전선로를 이용한 Rectangular Microtrip Patch Antenna 설계)

  • 고영혁;양규식;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.435-441
    • /
    • 1989
  • The three rectangular microstrip patch antenna of Resonant length, lambda/2 or , between two slot is designed by using the ring feed line, and the radiation pattern characteristic is showen. In case of the antenna of resonant length lambda/2 the radation pattern is shown at each antenna element, in the antenna of resonant length it is shown among patch antenna element.

  • PDF

Finite Element Analysis of Electrical Double Layers near Triple Contact Lines

  • Kang Kwan Hyoung;Kang In Seok;Lee Choung Mook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.491-494
    • /
    • 2002
  • To assess the electrostatic interaction of surfaces at the triple contact line, the electrostatic field is analyzed by using the finite element method. The Helmholtz free energy is used as a functional which should be minimized under an equilibrium condition. The numerical results are compared with the nonlinear analytical solution for a two-dimensional charged interface and linear solution for a wedge shaped geometry, which shows fairly good agreement. The method is applied to the analysis of electrostatic influence on the contact angle on a charged substrate. The excess free energy found to increase drastically as the contact angle approaches to zero. This excess free energy Plays an opposite role to the Primary electrocapillary effect, as the contact angle gets smaller. This enables an alternative explanation for the contact-angle saturation phenomenon occurring in electrical control of surface tension and contact angle.

  • PDF

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions (임의의 성형조건을 갖는 박판의 평면변형율 해석)

  • Keum, Y.T.;Lee, S.Y.;Wagoner, R.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

Welding Distortion Analysis of a Laser Welded Thin Box Structure (얇은 박스형 용접구조물의 용접변형 해석)

  • Kim, Choong-Gi;Kim, Jae-Woong;Kim, Kim-Chul
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin metal structure. In this study, numerical computations are performed to analyze effect of structure section shape and weld line location on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on bending deformation generated in outline welding of a thin box structure. From the numerical analysis, it was revealed that the section shape and weld line location play an important role on the welding distortion. Among 3 types of section shape design proposed in this study, the least deformation remained in the two path welded structure.

Three-dimensional analysis of stress and strain transmission through line joints of spatial linkage of plates

  • Rosenhouse, G.;Rutenberg, A.;Goldfarb, Y.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.11-23
    • /
    • 1995
  • The examined model consists of two substructures linked by a right angle rigid line joint. One element is a wall loaded externally along its upper edge by an uneven vertical load. The other element, defined as a plate, is not loaded. Stresses and displacements in the vicinity of the joint are analysed, considering the lateral distribution which leads to three-dimensional effects. The proposed solution combines classical approach with numerical means, using appropriate stress distribution polynomial functions along the joint. Space structure constructions supply cases of interest.

The Design of 2.4GHz Band LTCC Bandpass Filter using $\lambda/4$ Hairpin Resonators ($\lambda/4$ Hairpin 공진기를 이용한 2.4GHz 대역 LTCC 대역통과 여파기의 설계)

  • Seong Gyu Je;Choe Jae U;Park Hyeon Sik;Park Jang Hwan;Yeo Dong Hun
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.260-264
    • /
    • 2003
  • In this paper, a $\lambda/4$ hairpin resonator is proposed to reduce the size of planar resonators for a LTCC MLC bandpass filter. The $\lambda/4$ hairpin resonator operates as stepped impedance resonator (SIR) without changing the width of the planar resonator. It is composed of two sections those are parallel coupled line and transmission line. The characteristic impedance of two sections is different each other. The design formulas of the bandpass filter using the coupling element at the arbitrary position are derived from even and odd-mode analysis. The formulas can take account of the arbitrary coupling of lumped ana/or distributed resonators. The advantage of this filter is its abilities to change freely the coupling structure between two resonators. Experimental bandpass filters for 2.4GHz Band are implemented and their performances are shown.

  • PDF

Improvement of Voltage Sag applying Superconducting Fault Current Limiter with Magnetically Coupled Two Coils (두 코일의 자기결합을 이용한 초전도전류제한기 적용에 따른 선로 전압강하 개선)

  • Kim, Jin-Seok;Ahn, Jae-Min;Lim, Sung-Hun;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.43-45
    • /
    • 2008
  • In this paper, the operational characteristics of SFCL with magnetically coupled two coils were modeled and simulated by PSCAD/EMTDC. The dependence of the line voltage sag on the resistance of superconducting element during the fault period was analyzed. Through the analysis for the winding direction of two coils, the line voltage sag in case of the additive polarity winding was observed to be more improved compared to the case of the subtractive polarity winding.

  • PDF