• Title/Summary/Keyword: two-level resolution

Search Result 261, Processing Time 0.026 seconds

A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail (특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

Improvement of FISS capability and recent FISS observations in BBSO

  • Park, Hyungmin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.91.1-91.1
    • /
    • 2013
  • Since 2010, we have improved the Fast Imaging Solar Spectrograph (FISS) and observed the Sun. From the early observations we noticed two instrumental problems: poorer spatial resolution due to chromatic aberration and lower light level in the Ca II band. We tried to overcome these problems in two ways. First, we updated the relay optics. With the new one, we don't find any noticeable chromatic aberration between Ha and CaII and as a result can obtain the high resolution data in Ca II as well. Second, we replaced mirrors and the grating. This resulted in the increase of light level by a factor of up to 2.5, and hence in the high S/N ratio. The images constructed from the recentest observations indicate that the performance of the FISS is now much closer to our original intention than at the beginning.

  • PDF

A Study on Developing Fold-Over Designs with Four-Level Quantitative Factors (4-수준 계량인자가 포함된 반사계획에 관한 연구)

  • Choi, Kiew-Phil;Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Two-level fractional factorial designs are widely used when many factors are considered. When two-level fractional factorial designs are used, some effects are confounded with each other. To break the confounding between effects, we can use fractional factorial designs, called fold-over designs, in which certain signs in the design generators are switched. In this paper, optimal fold-over designs with four-level quantitative and two-level factors are presented for (1) the initial designs without curvature effect and (2) those with curvature effect. Optimal fold-over design tables are provided for 8-run, 16-run, and 32-run experiments.

A High-Resolution Heterodyne Interferometer using Beat Frequency between Two-Axial Modes of a HeNe Laser (2-종모드 레이저를 이용한 고분해능 헤테로다인 간섭계)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • We propose a new scheme of high-resolution heterodyne interferometer that employs the two-axial mode He-Ne laser with an inter-mode beat frequency of 600~1000 MHz. An electronic RF-heterodyne circuit lowers the beat frequency down to 5 MHz, so that the phase change of the interferometer output is precisely measured with a displacement resolution of 0.1 nanometer without significant loss of dynamic bandwidth. A thermal control scheme is adopted to stabilize the cavity length with ainus to suppress frequency drifts caused by the phenomena of frequency pulling and polarization anisotropy of the two-axial made laser to a stability level of 2 parts in $10^9$. The two-axial mode HeNe laser yields a high output power of 2.0 mW, which allows us to perform multiple measurements of up to 10 machine axes simultaneously.

ATMOSPHERIC CORRECTION OF LANDSAT SEA SURFACE TEMPERATURE BY USING TERRA MODIS

  • Kim, Jun-Soo;Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.864-867
    • /
    • 2006
  • Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in $R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean.

  • PDF

Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

  • Kang, Taeho;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

Anaphoric Reference Resolution in Expository Text: The Effects of Ellipsis (설명문의 대용어 참조해결과정: 대용어와 지시사 생략 효과)

  • Lee, Jae-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.2
    • /
    • pp.253-282
    • /
    • 2010
  • Two experiments were conducted to explore the effects of anaphora and demonstrative ellipsis on reference resolution. This study assumed that two type of ellipsis could be sensitive to antecedents' saliency: the reverse typicality and mention order of antecedents. The muti-task approach measured the antecedent's activation level and processing load for the conflict resolution of theories of anaphoric resolution. In Experiment 1, using ellipsis for anaphora, participants read a series of sentence pairs by self-paced and performed a probe recognition test. The results showed the main effects of antecedent's typicality and mention order in both tasks. In Experiment 2, using noun phrase without demonstrative for anaphora, participants read a series of sentence pairs by self-paced and performed a probe recognition test. The results showed main effects of mention order of antecedents for probe recognition task only. The first antecedent was recognized faster than the second one. The results of two experiments suggested that anaphora type and antecedent's saliency were dynamically interact in reference resolution for Korean.

  • PDF