• Title/Summary/Keyword: two-dimensional pattern

Search Result 659, Processing Time 0.027 seconds

The Effects of Velocity of Propulsion on the Degree of Hardship Performance during a Figure Skating (피겨스케이팅 활주속도가 운동수행기술 발휘에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to examine the effects of the result of hardship performance of the propulsion speed on the flying carmel spins during a Figure Skating. The subjects were five the korea national representative players. Kinematic variables were analyzed 5frame of the excursion phase by the three-dimensional motion analysis system(60Hz). The obtained conclusion were as follows: In this study, during the propulsion classify two groups as "type I" the acceleration patterns S3, S4 and "type II" the uniform velocity group S1, S2, S5. The results of percentage comparative analysis between type I and type II can be summarized as below: the height of jump(24%), the height of COM(25%), the maximum speed of Roundhouse Kick(21%), the judging technical score(18%), the flight time(13%), the velocity of spins(4%), the distance of flight(-6%) Analysis of the results on performance variables, the velocity pattern of the type I showed comparatively excellence than that of type II.

Fabrication of Poly(3,4-ethylenedioxythiopene) Patterns using Vapor Phase Polymerization

  • Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.265.2-265.2
    • /
    • 2013
  • We fabricate poly(3,4-ethylenedioxythiopene patterns using liquid-bridge-mediated nanotransfer (LB-nTM) printing via vapor phase polymerization (VPP). LB-nTM printing method can simultaneously enable the synthesis, alignment and patterning of the nanowires from molecular ink solutions. Two- or three-dimensional complex structures of VPP-PEDOT were directly fabricated over a large area using many types of molecular inks. VPP method is a versatile technique that can be used to obtain highly conducting coatings of conjugated polymer on both conducting and non-conducting substrates. The PEDOT patterns has analyzed crystallinity from X-ray diffraction pattern and select-area diffraction patterns. In addition, the PEDOT pattern has high conductivity compared other conducting polymers.

  • PDF

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Fabrication of a Subminiature 3 Dimensional Antenna for the Mobile Phone Handset (이동 통신 단말기용 초소형 3차원 안테나 제작)

  • Hong, Min-Gi;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1455-1461
    • /
    • 2008
  • We implemented a subminiature internal antenna that is around 1 cc volume for the mobile phone. The fundamental type of studied antenna is IFA(Inverted F Antenna), and this antenna is designed to be improved efficiency and gain due to minimum current cancellation by the avoidance of multiple bending pattern. For the implementation of multiple band, helix is applied to compensate for short antenna length for low frequency band, and a 3 dimensional pattern is used for high frequency band. We made two kinds of 3D structure antenna. One is a 1 cc volume antenna for GSM/DCS band on the bare board set, and the other is a 1.5 cc volume for the GSM/USPCS mobile phone set. Measurements showed good gain performance that average gain of two antenna on each band are $-3.46{\sim}-0.45\;dBi$ and $-4.80{\sim}-3.29\;dBi$ respectively.

Bar Temperature Analysis of a Hot Rolling Process. (열간 압연공정의 강판 온도 분포 해석)

  • 백기남;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.307-315
    • /
    • 1989
  • In this paper, we have analyzed the temperature variation trend of a slab on between the process of reheating furnace and the termination of roughing mill process during hot rolling process. 1) cooling by radiation and convection current in the air, 2) plastic deformation heat, 3) cooling by descaling water, 4) cooling by contact with rolling rolls and/or transmitting rolls. For the analysis, the factors have been adopted as the problems of the rolling process to be solved such that we have established an application technique in relation to the determination of boundary conditions on the slab surface. We have presented a procedure for an analysis of the cooling phenomenon treated as a problem of two-dimensional transient heat flow using finite difference equation and suggested techniques of implementing sequentialized rolling tasks in correlation with the procedure. From the result of simulation, it is shown that the difference between calculation value and measurement value is within the range of the industrial measurement error. Also, it is proved that the assumptions, conditions, and properties used in the computer simulation is appropriate by showing that the pattern of a drop in temperature at each rolling event is in accord with real circumstances.

Two-Dimensional Flow Analysis of Approach Channel for the Design of Spillway Guidewall (여수로 유도벽 설계를 위한 접근수로의 2차원 흐름해석)

  • Lee, Gil-Seong;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.491-501
    • /
    • 1998
  • Numerical simulations were performed to analyse the flow pattern of the approach channel and to design the spillway guidewall for stable flow conditions. RMA-2, two dimensional finite element model which can easily represent complicated geometry was used, and model parameters were estimated from the observation data of hydraulic model test. Numerical experiments were made separately for the approach region and for the upstream region, and upstream boundary position of the hydraulic model beyond which the boundary effects are negligible was determined from the numerical results. For the stable flow condition in approach channel, alternative designs for guidewall were developed, and flow analysis for alternative designs was done through the numerical simulation. From the analysis of alternative design, we can see that the flow pattern in the approach channel is stable and the lateral stage difference disappears mostly before the spillway crest.

  • PDF

Comparison between a 3 Dimensional Turbulent Numerical Model and Hydraulic Experiment Model for the flow phenomenon around a Lock Gate (배수갑문 주위의 흐름현상에 대한 3차원 난류 수치모형과 수리모형실험의 비교)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Ha, Jae-Yul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-169
    • /
    • 2007
  • This study is focused on the comparison of a 3 dimensional numerical and hydraulic model experiment for the flow phenomenon when a lock gate is opened. The lock gate is designed to discharge the flood flow rate at $218m^3/s$ of Solicheon at the Kun Jang national industry complex. The three dimensional ${\kappa}-{\epsilon}$ turbulent model of ANSYS CFX-10 of the computational fluid dynamics(CFD) program was used. The characteristics of CFX-10 are able to be simulated effectively for turbulent flow, especially the flow separation of the boundary layer of the two phase interface of air and water. The velocity and the flow pattern of the numerical model was showed to be similar to the results of the hydraulic model experiment.

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.