• Title/Summary/Keyword: two-dimensional hydraulic experiments

Search Result 51, Processing Time 0.025 seconds

A Study on Characteristics of Flood Flow at a Channel Confluence Connected Asymmetrically with Four Channels (네 개의 수로가 비대칭으로 연결된 수로 합류부에서의 홍수흐름 특성에 관한 연구)

  • Jeong, Woo Chang
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.767-781
    • /
    • 2013
  • In this study, the hydraulic model experiments and numerical simulations are carried out to analyze the flood flow characteristics in and around a channel confluence connected asymmetrically with four channels. The numerical model applied in this study is ANSYS CFX (ver. 14) which is the commercial three-dimensional CFD model. As results of comparison between the measured and simulated water depth distributions in and around a channel confluence, the agreement is relatively well satisfied. It can be shown in this study that the water surface profiles in and around a channel confluence are significant different with the two channel directions in which the water are entering and increased inflow.

Efficiency of Marine Hydropower Farms Consisting of MultipleVertical Axis Cross-Flow Turbines

  • Georgescu, Andrei-Mugur;Georgescu, Sanda-Carmen;Cosoiu, Costin Ioan;Alboiu, Nicolae
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.150-160
    • /
    • 2011
  • This study focuses on the Achard turbine, a vertical axis, cross-flow, marine current turbine module. Similar modules can be superposed to form towers. A marine or river hydropower farm consists of a cluster of barges, each gathering several parallel rows of towers, running in stabilized current. Two-dimensional numerical modelling is performed in a horizontal cross-section of all towers, using FLUENT and COMSOL Multiphysics. Numerical models validation with experimental results is performed through the velocity distribution, depicted by Acoustic Doppler Velocimetry, in the wake of the middle turbine within a farm model. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The overall farm efficiency, with respect to the spatial arrangement of the towers, was depicted by 2D modelling of the unsteady flow inside the farm, using COMSOL Multiphysics. Rows of overlapping parallel towers ensure the increase of global efficiency of the farm.

An Experimental Study on Scour at V-shaped Riffle (V형 여울에서 발생하는 세굴에 관한 실험 연구)

  • Yu, Dae-Young;Park, Jung-Hwan;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.507-520
    • /
    • 2003
  • A V-shaped riffle is an artificial hydraulic structure haying two wings from the streamside with a narrow opening in between. It is usually made of crushed stones or large boulders. It limits channel width and accelerates the flow through the constricted section causing a local scour just downstream. The V-shaped riffle provides with a unique aquatic habitat by forming a pool and sandbars around the pool edge, increasing local morphologic, hydraulic and sedimentological diversity. This study investigates experimentally the scour characteristics of the V-shaped riffle in the sandbed stream and proposes a predictive equation for the scour. Total 45 cases of experiments were conducted to examine the effect of hydraulic factors and configuration of V-shaped riffle on the geometry of scour holes. From the comparison of the experimental results of this study with the predictive equation of spur dike by Breusers and Raudkivi(1991), it is found that their predictive equation of spur dike underestimates the maximum scour depth downstream of the V-shaped riffle. h new predictive equation for the maximum scour depth was developed using the non-dimensional hydraulic and geometrical variables. The parameters used in the proposed equations were determined using the experimental data. The analysis reveals that the scour depth is dependent dominantly on the Froude number at the opening of the V-shaped riffle, while the angle of riffle and the opening width also affect the scour depth. The proposed equation for the scour of V-shaped riffle well agrees with the experimental data. It can be used for estimating the scour of the V-shaped riffle in sandbed streams.

An Experimental Study on Characteristics of Beach Erosion Considering Armoring Effect of Gabions (개비온의 피복효과를 고려한 해빈침식특성에 관한 실험적 연구)

  • Lee, Seong Dae;Lee, Sang Young;Choi, Hyuk Jin;Shin, Young Seop
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.305-313
    • /
    • 2019
  • Number of coastal protection structures have been increased rapidly due to rising sea levels and deteriorated sea conditions. Coastal structures should be designed to meet coastal engineering requirements and ecosystem conditions, while they are not lost or removed. In this study, trapezoidal gabion block was developed for the purpose, and two-dimensional laboratory experiments were conducted to validate applicability of the block. The experiments were carried out with eight types of erosive and accretive wave conditions. As a result, it was confirmed that the gabion blocks have a feature of preventing erosion of beach. The newly designed gabion blocks could be an alternative as a countermeasure method for beach erosion.

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.

Fluid Flow and Solute Transport in a Discrete Fracture Network Model with Nonlinear Hydromechanical Effect (비선형 hydromechanic 효과를 고려한 이산 균열망 모형에서의 유체흐름과 오염물질 이송에 관한 수치모의 실험)

  • Jeong, U-Chang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.347-360
    • /
    • 1998
  • Numerical simulations for fluid flow and solute transport in a fracture rock masses are performed by using a transient flow model, which is based on the three-dimensional stochastic and discrete fracture network model (DFN model) and is coupled hydraulic model with mechanical model. In the numerical simulations of the solute transport, we used to the particle following algorithm which is similar to an advective biased random walk. The purpose of this study is to predict the response of the tracer test between two deep bore holes (GPK1 and GPK2) implanted at Soultz sous Foret in France, in the context of the geothermal researches.l The data sets used are obtained from in situcirculating experiments during 1995. As the result of the transport simulation, the mean transit time for the non reactive particles is about 5 days between two bore holes.

  • PDF

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.

Numerical Model of Circulation due to Sudden Variation of Flow Section (흐름 단면(斷面)의 급변화(急變化)에 의한 순환(循環)의 수치모형(數値模型))

  • Suh, Seung Won;Park, Jung Eng;Yoon, Tae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.21-31
    • /
    • 1983
  • Circulation phenamena in open channel with abrupt variation in flow section are studied by solving numerically two dimensional Navier-Stokes equations integrated over depth. Galerkin type finite element method is used as numerical scheme. Numerical results by both implicit and explicit schemes tested in one-demensional rectangular channel agree closely with the known solution. The numerical experiments carded out in the open channel with a pool indicate the expected flow pattern and the center of the circulation coincides with the geometrical center, but the vectors of velocity appear father small, and it remains to be further investigated. Numerically simulated flow profiles along the channel with constrictions such as bridge piers and abutments are shown to be close to hydraulic experimental results. Thus further refined numerical technique is expected to be able to serve as a tool to evaluate the effect of bridge backwater.

  • PDF

The Stability Riprap on Scattered Submerged Breakwater due to Physical Model (난적잠제 상부 사석의 안정에 관한 실험적 연구)

  • Park, Sang-Kil;Kim, Woo-Saeng;Lee, Jae-Sung;Kim, Sung-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • This study described the stability of riprap, which was examined by a two-dimensional physical model of a scattered riprap submarine breakwater. Artificial reef structures made of scattered riprap are used like artificial intertidal zone structures as waterfront seaside structures. To prevent topography change in such an artificial intertidal zone the energy is reduced at the scattered riprap submarine breakwater by intercepting high waves. The breaking waves are converted into flow on the front surface slope of the submarine breakwater, which follows the upper part of the artificial intertidal zone. Because of this phenomenon of resisting water flow, it is very important to calculate the required weight of the riprap to maintain its stability. The results of a physical model can be abstracted as shown below. First, distribute the wave breaking types occurring on the front surface slope of the submarine breakwater and arrange it in relation to the movement of riprap. Second, using the hydraulic phenomenon that occurs at the depth of the scattered riprap submarine breakwater, propose a calculation formula for the velocity distribution showing the influence on the stability of the riprap. Third, propose and compare values, which can be obtained by experiments and calculations for riprap stability on the front surface of the artificial intertidal zone. Fourth, calculate the required weight for riprap stability.

A Study on Simulation of Dam-break Wave Using Two-dimensional Finite Volume Model (2차원 유한체적모형을 이용한 댐 붕괴파 모의에 관한 연구)

  • Jeong, Woo-Chang;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2011
  • In this study, in order to reduce the numerical oscillation due to the unbalance between source and flux terms as the HLLC scheme is applied to the flow analysis on the irregular bed topography, a unstructured finite volume model based on the well-balanced HLLC scheme and the shallow water equations is developed and applied to problems of dam-break waves. The well-balanced HLLC scheme considers directly the gradient of bed topography as the flux terms is calculated. This scheme provides the good numerical balance between the source and flux terms in the case of the application to the steady-state transcritical flow. To verify the numerical model developed in this study, it is applied to three cases of hydraulic model experiments and a field case study of Mapasset dam failure (France). As a result of the verification, the predicted numerical results agree relatively well with available laboratory and field measurements. The model provides slightly more accurate results compared with the existing models.