• Title/Summary/Keyword: two-color method

Search Result 987, Processing Time 0.024 seconds

Fast and Efficient Method for Fire Detection Using Image Processing

  • Celik, Turgay
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2010
  • Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE $L^*a^*b^*$ color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method.

Identification of Transformed Image Using the Composition of Features

  • Yang, Won-Keun;Cho, A-Young;Cho, Ik-Hwan;Oh, Weon-Geun;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.764-776
    • /
    • 2008
  • Image identification is the process of checking whether the query image is the transformed version of the specific original image or not. In this paper, image identification method based on feature composition is proposed. Used features include color distance, texture information and average pixel intensity. We extract color characteristics using color distance and texture information by Modified Generalized Symmetry Transform as well as average intensity of each pixel as features. Individual feature is quantized adaptively to be used as bins of histogram. The histogram is normalized according to data type and it is used as the signature in comparing the query image with database images. In matching part, Manhattan distance is used for measuring distance between two signatures. To evaluate the performance of the proposed method, independent test and accuracy test are achieved. In independent test, 60,433 images are used to evaluate the ability of discrimination between different images. And 4,002 original images and its 29 transformed versions are used in accuracy test, which evaluate the ability that the proposed algorithm can find the original image correctly when some transforms was applied in original image. Experiment results show that the proposed identification method has good performance in accuracy test. And the proposed method is very useful in real environment because of its high accuracy and fast matching capacity.

  • PDF

A Study of Color Inclination of Office Furnitures in Overseas Based on Theory of Color Harmony (색채조화론에 의거한 국외 오피스 가구의 색채 경향 분석)

  • Baik, Eun;Jung, Hyun-Jung
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.2
    • /
    • pp.169-184
    • /
    • 2012
  • As this research is the one analyzing the color using status of the office furniture in overseas, it surveyed and analyzed the color use on the basis of total 22 products by selecting 7 office furniture companies in overseas so as to promote the upright use of the color in planning the office furniture. As for the research method, the theory of color system (NCS) and the theory of color harmony (Ostwald and Fiber Biren), which are used in this research on the basis of the theoretical consideration for the office furniture and the definition and importance of the color, have been specified and analyzed on the basis of these. In this result, only 8 products, which are 36.4% among 22 products of 7 companies, are harmonized as per the theory of color harmony of two colors. It is expected that the effective influence may be bestowed on improvement of the office environment and increase of the work efficiency as the more planned and effective use of the color is made for the office furniture on the basis of this research.

  • PDF

Colorization Algorithm Using Wavelet Packet Transform (웨이블릿 패킷 변환을 이용한 흑백 영상의 칼라화 알고리즘)

  • Ko, Kyung-Woo;Kwon, Oh-Seol;Son, Chang-Hwan;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Coloriztion algorithms, which hide color information into gray images and find them to recover color images, have been developed recently. In these methods, it is important to minimize the loss of original information while the color components are embedded and extracted. In this paper, we propose a colorization method using a wavelet packet transform in order to embed color components with minimum loss of original information. In addition, the compensation processing of color saturation in the recovered color images is achieved. In the color-to-gray process, an input RGB image is converted into Y, Cb, and Cr images, and a wavelet packet transform is applied to the Y image. After analyzing the amounts of total energy for each sub-band, color components are embedded into two sub-bands including minimum amount of energy on the Y image. This makes it possible not only to hide color components in the Y image, but to recover the Y image with minimum loss of original information. In the gray-to-color process, the color saturation of the recovered color images is decreased by printing and scanning process. To increase color saturation, the characteristic curve between printer and scanner, which can estimate the change of pixel values before and after printing and scanning process, is used to compensate the pixel values of printed and scanned gray images. In addition, the scaling method of the Cb and Cr components is applied to the gray-to-color process. Through the experiments, it is shown that the proposed method improves both boundary details and color saturation in the recovered color images.

Content-based Image Retrieval Using Color and Shape (색상과 형태를 이용한 내용 기반 영상 검색)

  • Ha, Jeong-Yo;Choi, Mi-Young;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.117-124
    • /
    • 2008
  • We suggest CBIR(Content Based Image Retrieval) method using color and shape information. Using just one feature information may cause inaccuracy compared with using more than two feature information. Therefore many image retrieval system use many feature informations like color, shape and other features. We use two feature, HSI color information especially Hue value and CSS(Curvature Scale Space) as shape information. We search candidate image form DB which include feature information of many images. When we use two features, we could approach better result.

  • PDF

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Basic Research for the Recognition Algorithm of Tongue Coatings for Implementing a Digital Automatic Diagnosis System (디지털 자동 설진 시스템 구축을 위한 설태 인식 알고리즘 기초 연구)

  • Kim, Keun-Ho;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The status and the property of a tongue are the important indicators to diagnose one's health like physiological and clinicopathological changes of inner organs. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, classifying tongue coating is inevitable but difficult since the features like color and texture of the tongue coatings and substance have little difference, especially in the neighborhood on the tongue surface. The proposed method has two procedures; the first is to acquire the color table to classify tongue coatings and substance by automatically separating coating regions marked by oriental medical doctors, decomposing the color components of the region into hue, saturation and brightness and obtaining the 2nd order discriminant with statistical data of hue and saturation corresponding to each kind of tongue coatings, and the other is to apply the tongue region in an input image to the color table, resulting in separating the regions of tongue coatings and classifying them automatically. As a result, kinds of tongue coatings and substance were segmented from a face image corresponding to regions marked by oriental medical doctors and the color table for classification took hue and saturation values as inputs and produced the classification of the values into white coating, yellow coating and substance in a digital tongue diagnosis system. The coating regions classified by the proposed method were almost the same to the marked regions. The exactness of classification was 83%, which is the degree of correspondence between what Oriental medical doctors diagnosed and what the proposed method classified. Since the classified regions provide effective information, the proposed method can be used to make an objective and standardized diagnosis and applied to an ubiquitous healthcare system. Therefore, the method will be able to be widely used in Oriental medicine.

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance (빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법)

  • Cho, Han-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

  • PDF

A Study on the Extraction of Vectoring Objects in the Color Map Image (칼라지도영상에서의 벡터링 대상물 추출에 관한 연구)

  • 김종민;김성연;김민환
    • Spatial Information Research
    • /
    • v.3 no.2
    • /
    • pp.179-189
    • /
    • 1995
  • To make vector data from a map which has no negative plates by using vectoring tool, it is necessary that we can extract objects to be vectorized from a scanned map. In this paper, we studied on extracting vectoring objects from scanned color maps. To do this, we classified vectoring objects into three types : line type, filled - area type and character/symbol type. To make the extraction method effective, we analyzed characteristics of vectoring objects and color distribution in scanned color maps. Then, we applied these characteristics to designing process of the extraction method. To extract the line type object, our line tracing method was designed by using the masks which considered connectivity and geometrical characteristics of lines. By using the local thresholding method and the similarity function for comparing the color distribution between two NxN blocks, we extracted character/symbol and the filled-area objects effectively. The method proposed in this paper can be used for constructing the small scale GIS application economically using existing color maps.

  • PDF

Image Information Retrieval Using DTW(Dynamic Time Warping) (DTW(Dynamic Time Warping)를 이용한 영상 정보 검색)

  • Ha, Jeong-Yo;Lee, Na-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.423-431
    • /
    • 2009
  • There are various image retrieval methods using shape, color and texture features. One of the most active area is using shape and color information. A number of shape representations have been suggested to recognize shapes even under affine transformation. There are many kinds of method for shape recognition, the well-known method is Fourier descriptors and moment invariant. The other method is CSS(Curvature Scale Space). The maxima of curvature scale space image have already been used to represent 2-D shapes in different applications. Because preexistence CSS exists several problems, in this paper we use improved CSS method for retrieval image. There are two kinds of method, One is using RGB color information feature and the other is using HSI color information feature. In this paper we used HSI color model to represent color histogram before, then use it as comparison measure. The similarity is measured by using Euclidean distance and for reduce search time and accuracy, We use DTW for measure similarity. Compare with the result of using Euclidean distance, we can find efficiency elevated.

  • PDF