• Title/Summary/Keyword: two-axis theory

Search Result 116, Processing Time 0.028 seconds

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

Study on Three-yin-three-yang on the Parting and Meeting of Yin-Yang in Hwangjenegyeng Somun (소문 음양이합론의 삼음삼양 해석과 운용방법)

  • Kim Kwang Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1347-1355
    • /
    • 2003
  • The adapted scope of the Opening-covering-axis of Three-yin-three-yang can summary two parts. the first, former treatise of Gyeng-Lak emphasized the line structure by point and line but now we can understand expansible structure as not only line but also space of structure by the space structure of six-meeting. So the application of Gyeng-Lak can be various by extensive analysis of the Hand-three-yin-three-yang in Sky(Yang) including the Foot-three-yin-three-yang in Ground (Vin), even if the original text has limited examples. The second, former additional explanations of Hwangjenegyeng Sanghanlon by doctors can be profoundly analysis about the pathology and cure process of Three-yin-three-yang of human body. It has base on the metaphorically symbolized theory of Three-yin-three-yang. This is the Saeng-jang-shu-chang of So-yin, Tae-yang, Yang-myeng, So-yang. Tae-yin, Guel-yin in order. Also the circulation of Opening-covering-axis of Three-yin-three-yang has order in Tae-yang (Opening), Yang-myeng (Covering), So-yang (Axis), Tae-yin (Opening), Guel-yin (Covering), So-yin(Axis).

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

NUMERICAL METHODS FOR OPEN WATER PERFORMANCE PREDICTION OF HORIZONTAL AXIS TIDAL STREAM ENERGY CONVERSION TURBINE (조류발전용 수평축터빈의 단독성능 평가를 위한 수치 해석법)

  • Lee, J.H.;Kim, D.J.;Rhee, S.H.;Kim, M.C.;Hyun, B.S.;Nam, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.155-162
    • /
    • 2010
  • Recently, due to high oil prices and environmental pollution issues, interest of alternative energy development increases and the related research is widely conducted. Among those research activities the tidal stream power generation utilizes the tidal flow as its mechanical power resource and less depends on the environmental condition for installation and operation than other renewable energy resources. Therefore the amount of power generated is quite consistent and straightforward to predict. However, research on the tidal stream energy conversion turbine is rarely found. In the present study, two numerical methods were developed and compared for the open water Momentum Theory, which is widely used for wind turbines, was adopted. The moving reference frame method for Computational Fluid Dynamis solver were also used. Hybrid meshing was used for the complex geometry of turbines. The analysis results using each method were compared to figure out a better method for the performance prediction.

  • PDF

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

ANALYSIS OF A LAMINATED COMPOSITE WIND TURBINE BLADE CHARACTERISTICS THROUGH MATHEMATICAL APPROACH

  • CHOI, YOUNG-DO;GO, JAEGWI;KIM, SEOKCHAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.367-380
    • /
    • 2019
  • A 1kW-class horizontal axis wind turbine (HAWT) rotor blade is taken into account to investigate elastic characteristics in 2-D. The elastic blade field is composed of symmetric cross-ply laminated composite material. Blade element momentum theory is applied to obtain the boundary conditions pressuring the blade, and the plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. For the elastic characteristics a fair of differential equations are derived based on the elastic theory. The domain is divided by triangular and rectangular elements due to the complexity of the blade configuration, and a finite element method is developed for the governing equations to search approximate solutions. The results describe that the elastic behavior is deeply influenced by the layered angle of the middle laminate and the stability of the blade can be improved by controlling the layered angle of laminates, which can be evaluated by the mathematical approach.

Predicting Double-Blade Vertical Axis Wind Turbine Performance by a Quadruple-Multiple Streamtube Model

  • Hara, Yutaka;Kawamura, Takafumi;Akimoto, Hiromichi;Tanaka, Kenji;Nakamura, Takuju;Mizumukai, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.16-27
    • /
    • 2014
  • Double-blade vertical axis wind turbines (DB-VAWTs) can improve the self-starting performance of lift-driven VAWTs. We here propose the quadruple-multiple streamtube model (QMS), based on the blade element momentum (BEM) theory, for simulating DB-VAWT performance. Model validity is investigated by comparison to computational fluid dynamics (CFD) prediction for two kinds of two-dimensional DB-VAWT rotors for two rotor scales with three inner-outer radius ratios: 0.25, 0.5, and 0.75. The BEM-QMS model does not consider the effects of an inner rotor on the flow speed in the upwind half of the rotor, so we introduce a correction factor for this flow speed. The maximum power coefficient predicted by the modified BEM-QMS model for a DB-VAWT is thus closer to the CFD prediction.

Off-axis Two-mirror System with Wide Field of View Based on Diffractive Mirror

  • Meng, Qingyu;Dong, Jihong;Wang, Dong;Liang, Wenjing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.604-613
    • /
    • 2015
  • An unobstructed off-axis two-mirror system is presented in this paper. First a suitable initial configuration is established based on third-order aberration theory. In order to achieve a wide field of view (FOV) with high image quality , the diffractive mirror is adopted in the two-mirror system to increase the optimization freedom and the aberration relationship between diffractive phase coefficients and Zernike coefficients is derived. Furthermore, a complete comparison design example with a focal length of 1200 mm, F-number of 12, and FOV of 40° × 2° is given to verify the aberration correction ability of the diffractive mirror. The system average wavefront error is 0.007 λ (λ=0.6328 μm) developed from 0.061 λ when the system didn’t adopt the diffractive mirror. In this system the phase modulation function of the diffractive mirror is established as an even function of x, so we could obtain a symmetrical imaging quality about the tangential plane, and the symmetric aberration performance also brings considerable convenience to alignment and testing for the system.

Transient Analysis of Synchronous Machine (동기 발전기의 과도 해석)

  • Park, Chul-Won;Park, Chang-Soo;Shin, Kwang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.120-125
    • /
    • 2006
  • In this paper, the voltage equation of a synchronous machine is established using the two-axis theory. And we were simulated model of the synchronous generator for power system fault analysis. It can be used to analyze important features of faults and to develope enhanced protection methods.

  • PDF

Effect of Duloxetine in Functional Gastrointestinal Disorder : In the Perspective of 'Brain-Gut Axis' (기능성 위장관 장애에서 Duloxetine의 효과 : '뇌-장관 축' 모델을 중심으로)

  • Lee, Sang-Shin;Park, Si-Sung
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.20 no.2
    • /
    • pp.135-138
    • /
    • 2012
  • The pathophysiology of functional gastrointestinal disorder(FGID) is not completely understood, but the importance of the 'Brain-Gut Axis(BGA)' model in FGID is being increasingly recognized. The BGA model is a bidirectional, hard-wired and homeostatic relationship between the central nervous system(CNS) and the enteric nervous system(ENS) via neural, neurohormonal and neuroimmunological pathways. In addition, the BGA model would provide a rationale for the use of psychotropics on FGID. The authors experienced two cases in which duloxetine, a serotonin-norepinephrine reuptake inhibitor, was effective in relieving FGID symptoms as well as psychiatric symptoms such as depression and hypochondriacal anxiety. Therefore we discuss the vignettes from the perspective of BGA theory. Duloxetine showed efficacy in these two patients by reducing visceral hypersensivity (bottom-up regulation) and by relieving depression and anxiety(top-down regulation).

  • PDF