• Title/Summary/Keyword: two stages fermentation

Search Result 29, Processing Time 0.026 seconds

Effects of Inclusion Levels of Wheat Bran and Body Weight on Ileal and Fecal Digestibility in Growing Pigs

  • Huang, Q.;Su, Y.B.;Li, D.F.;Liu, L.;Huang, C.F.;Zhu, Z.P.;Lai, C.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.847-854
    • /
    • 2015
  • The objective of this study was to determine the effects of graded inclusions of wheat bran (0%, 9.65%, 48.25% wheat bran) and two growth stages (from 32.5 to 47.2 kg and 59.4 to 78.7 kg, respectively) on the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD) and hindgut fermentation of nutrients and energy in growing pigs. Six light pigs (initial body weight [BW] $32.5{\pm}2.1kg$) and six heavy pigs (initial BW $59.4{\pm}3.2kg$) were surgically prepared with a T-cannula in the distal ileum. A difference method was used to calculate the nutrient and energy digestibility of wheat bran by means of comparison with a basal diet consisting of corn-soybean meal (0% wheat bran). Two additional diets were formulated by replacing 9.65% and 48.25% wheat bran by the basal diet, respectively. Each group of pigs was allotted to a $6{\times}3$ Youden square design, and pigs were fed to three experimental diets during three 11-d periods. Hindgut fermentation values were calculated as the differences between ATTD and AID values. For the wheat bran diets, the AID and ATTD of dry matter (DM), ash, organic matter (OM), carbohydrates (CHO), gross energy (GE), and digestible energy (DE) decreased with increasing inclusion levels of wheat bran (p<0.05). While only AID of CHO and ATTD of DM, ash, OM, CHO, GE, and DE content differed (p<0.05) when considering the BW effect. For the wheat bran ingredient, there was a wider variation effect (p<0.01) on the nutrient and energy digestibility of wheat bran in 9.65% inclusion level due to the coefficient of variation (CV) of the nutrient and energy digestibility being higher at 9.65% compared to 48.25% inclusion level of wheat bran. Digestible energy content of wheat bran at 48.25% inclusion level (4.8 and 6.7 MJ/kg of DM, respectively) fermented by hindgut was significantly higher (p<0.05) than that in 9.65% wheat bran inclusion level (2.56 and 2.12 MJ/kg of DM, respectively), which was also affected (p<0.05) by two growth stages. This increase in hindgut fermentation caused the difference in ileal DE (p<0.05) to disappear at total tract level. All in all, increasing wheat bran levels in diets negatively influences the digestibility of some nutrients in pigs, while it positively affects the DE fermentation in the hindgut.

Effects of Yeast Strains and Fermentation Temperatures in Production of Hydrogen Sulfide During Beer Fermentation (맥주의 발효과정에서 효모와 발효온도가 황화수소의 발생에 미치는 영향)

  • Kim, Young-Ran;Moon, Seung-Tae;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.238-242
    • /
    • 2008
  • In this study, hydrogen sulfide ($H_2S$) production was examined during beer fermentation using two ale and two lager yeast strains. In the lager yeast fermentation, a large amount of $H_2S$ was produced in the early fermentation stages when the yeast were actively fermenting wort, indicating a positive relationship between the level of H2S production and the yeast growth rate during fermentation. The ale yeasts produced much lower levels of H2S than the lager yeasts. In the lager fermentation, a higher fermentation temperature shortened the fermentation period, but much higher levels of $H_2S$ were produced at higher temperatures. American pilsner lager yeast fermenting at $15^{\circ}C$ produced a relatively high level of $H_2S$ at the end of fermentation, which would require a longer aging time to remove this malodorous volatile sulfur compound. Not including the English ale strain, which produced a higher level of H2S at lower temperatures, the ale yeast produced lower levels of $H_2S$ at lower temperatures, suggesting that each strain has an optimum fermentation temperature for H2S production.

Quality Characteristics of Vinegar Added with Different Levels of Black Garlic (흑마늘의 첨가량을 달리한 식초의 품질특성)

  • Sim, Hye Jin;Seo, Weon Taek;Choi, Myoung Hyo;Kim, Kyoung Hwa;Shin, Jung Hye;Kang, Min Jung
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.16-26
    • /
    • 2016
  • In this study, we aimed to develop functional vinegar with different levels of black garlic through two stages of fermentation. Black garlic vinegars were prepared from black garlic and water (w/w) mixed with 1:2 (BG3), 1:5 (BG6), 1:9 (BG9) and 1:11 (BG12), and adding the sugar by adjusting the soluble solids content to $14^{\circ}Brix$. The alcohol content of black garlic vinegar was 5.2-5.5% after 7 days of alcohol fermentation at $25^{\circ}C$. Acetic acid fermented was at $30^{\circ}C$ for 25 days and samples were taken at 3, 6, 9, 12, 15, 20 and 25 days. The pH of black garlic vinegar was not significantly different among the samples, but acidity was increased during fermentation. Total polyphenol contents showed irregular changes with the fermentation periods and were higher by black garlic content. At 25 days fermentation, total polyphenol contents were 18.96-56.56 mg/100 mL. Acetic acid content of black garlic vinegars was higher than other organic acids. S-allyl cysteine (SAC) contents of BG3 and BG6 were 13.03-14.54 and 1.69-2.20 mg/L, respectively. However SAC was not detected in BG9 and BG12. In 25 days fermented black garlic vinegar, the major mineral was K with a content ratio of 61-68% of total minerals. The DPPH and ABTS radical scavenging activity of 25 days fermented black garlic vinegar were stronger at higher black garlic content.

Regulation of Metabolic Flux in Lactobacillus casei for Lactic Acid Production by Overexpressed ldhL Gene with Two-Stage Oxygen Supply Strategy

  • Ge, Xiang-Yang;Xu, Yan;Chen, Xiang;Zhang, Long-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi

  • Jung, Suk-Hee;Park, Joung-Whan;Cho, Il-Jae;Lee, Nam-Keun;Yeo, In-Cheol;Kim, Byung-Yong;Kim, Hye-Kyung;Hahm, Young-Tae
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

Biopolyrner Production of Zoogloea ramigera in Batch, Fed-Batch and Continuous Culture Processes (Zoogloea ramigera의 회분식, 유가배양, 연속배양에 의한 생물고분자 생산)

  • 안대희;정윤철
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.196-202
    • /
    • 1992
  • Zoogloea ramigera 115 was selected for the production of viscous microbial polysaccharide for bioflocculants usage. Batch, fed-batch, and continuous culture processes were examined with regard to the high biopolymer production. Several carbon sources were tested, including glucose, lactose, molasses, and cheese whey. The C/N ratio of 90 was most effective for biopolymer production from glucose, while the C/N ratios of 30 for lactose and 60 for both molasses and cheese whey substrate gave a maximum production. Fed batch culture proved more effective to increase final biopolymer concentration than batch culture. Continuous fermentation with two stages modifying C/N ratio increased the productivity. The production rates were a maximum at dilution rate of 0.048 $hr^{-1}$ for molasses and at 0.096 $hr^{-1}$for cheese whey.

  • PDF

Fermentation Process and Physiochemical Characteristics of Yakju(Korean cleared rice wine) with Addition of Ginseng Powder (인삼박을 첨가한 약주의 제조 및 이화학적 특성)

  • 이인선;양의주;정용진;서지형
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.463-468
    • /
    • 1999
  • The characteristics and quality of Yakju with addition of ginseng powder originated in Choongchungdo were evaluated. At result, pH was decreased at the beginning stage of two stages fermentation and then slowly increased. Total acidity were increased in the cases of all (A), (B) and (C) during the fermentation. (A) group used Nuruk, crude enzyme and powder yeast showed the highest pH of 7.08 and total acidity of 0.84 at the 4th day of fermentation. The alcohol contents of B(21.0%) and C(20.4%) used cultured yeast were higher than A(19.0%) used powder yeast at the 4th day of fermentation. Also, inhibition against alcohol fermentation by ginseng powder wasn't showed and amino nitrogen contents were higher in (A) and (C) with addition of crude enzyme. Free sugar were the highest in (A) used both Nuruk and crude enzyme such as glucose of 599.16, maltose of 129.11mg%. Free amino acids were much more in A(580.02mg%) than in B(527.48mg%) and C(538.74mg%). from the sensory evaluation, desirable color and flavor qulity for 40 ages was (A) and (B) which was used Nuruk, and that for 20 ages was (C) which was used crude enzyme. However the best taste and overall preference was (B) for 20 and 40 ages of all. Therefore to produce high quality Yauju and commercialize, studies of fermentation process in Yakju should proceed later.

  • PDF

Comparison of nitrogen transformation dynamics in non-irradiated and irradiated alfalfa and red clover during ensiling

  • Dong, Zhihao;Li, Junfeng;Chen, Lei;Yuan, Xianjun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1521-1527
    • /
    • 2019
  • Objective: To study the contribution of plant enzyme and microbial activities on protein degradation in silage, this study evaluated the nitrogen transformation dynamics during ensiling of non- and irradiated alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.). Methods: Alfalfa and red clover silages were prepared and equally divided into two groups. One group was exposed to ${\gamma}$-irradiation at a recommended dosage (25 Gky). Therefore, four types of silages were produced: i) non-irradiated alfalfa silage; ii) irradiated alfalfa silage; iii) non-irradiated red clover silage; and iv) irradiated red clover silage. These silages were opened for fermentation quality and nitrogen components analyses after 1, 4, 8, and 30 days, respectively. Results: The ${\gamma}$-irradiation successfully suppressed microbial activity, indicated by high pH and no apparent increases in fermentation end products in irradiated silages. All nitrogen components, except for peptide-N, increased throughout the ensiling process. Proteolysis less occurred in red clover silages compared with alfalfa silages, indicated by smaller (p<0.05) increment in peptide-N and free amino acid N (FAA-N) during early stage of ensiling. The ${\gamma}$-irradiation treatment increased (p<0.05) peptide-N and FAA-N in alfalfa silage at day 1, whereas not in red clover silage; these two nitrogen components were higher (p<0.05) between day 4 and day 30 in non-irradiated silages than the irradiated silages. The ammonia nitrogen and non-protein nitrogen were highest in non-irradiated alfalfa silage and lowest in irradiated red clover silage after ensiling. Conclusion: The result of this study indicate that red clover and alfalfa are two forages varying in their nitrogen transformation patterns, especially during early stages of ensiling. Microbial activity plays a certain role in the proteolysis and seems little affected by the presence of polyphenol oxidase in red clover compared with alfalfaa.

Life Cycle Assessment of Ethanol Production Process Based on Catalytic Reaction (촉매반응에 의한 에탄올 생산공정의 전 과정 평가)

  • Chung, Yonsoo;Hwang, Ilhoon;Yeo, Yeong-Koo;Joo, Oh-Shim;Jung, Kwang-Deog
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • In this paper, the methodology of life-cycle assessment was applied to an ethanol production process based on catalytic reaction. The environmental performance of the process was quantified and compared with that of the fermentation process. The purpose of the assessment was to develop design guidelines for the environmentally better ethanol production. The assessment was carried only on the stages of raw material acquisition through ethanol manufacture since it was assumed that ethanol from two processes had the same environmental impacts through its use and discard. The inventory analysis of the catalytic process resulted in that carbon dioxide from methanol production was the major environmental impact. The impact assessment showed that the fermentation process was environmentally better than the catalytic one. Suggestions for environmental improvement of the catalytic process were prepared based on the assessment results.

A study on the quality of Naengmyon Broth - Sensory and Microbiological properties by fermentation and addition of Dongchimi- (냉면육수의 품질에 관한 연구 - 동치미 발효 정도와 첨가량에 따른 관능적 및 미생물학적 특성 -)

  • Kim Hyung-Ryurl;Jang Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.1-11
    • /
    • 2005
  • The application of Dongchimi liquid into Naengmyon broth for the improved eating quality of Naengmyon was scientifically explored by reviewing the quality properties of the product. Primarily, the optimum fermentation conditions for Dongchimi from which the liquid portion was extracted were pursued and the optimum mixing ratio was sought on the basis of sensory and microbiological properties of the product. The liquid portions which had been periodically extracted from Dongchimi at intervals of two or five days during fermentation at $10^{\circ}C$ were added to Naengmyon broth. The treatments were prepared with three levels, namely, basic broth only('A') and the ratios of 3:7(v/v, 'B') and 5:5(v/v, 'C') of Dongchimi liquid and basic broth, respectively. According to assessments of Dongchimi liquid on taste and intensity based on sensory analyses, the organoleptic factors such as color, smell, sour taste, carbonated taste, and overall acceptability were given higher values from day 11 to day 17 in all items. As for the assessment of Dongchimi liquid on intensity, color, sour odor, moldy odor, and carbonated taste have shown the increasing scores during with high intensities while those for clearness has stayed low. Most of the phenomena observed from the Naengmyon broth substituted with $30\%$ (Treatment 'A') and $50\%$ (Treatment 'B') of Dongchimi liquids with different storage periods ensued much of the previous fermentation pattern of Dongchimi itself. Organoleptic assessment on taste and its intensity showed that better(the best) scores could be obtained at between day 16$\~$25(17) and 13$\~$20(15) for Treatments A and B, respectively. The intensity scores of taste for color, smell, carbonated taste, sour taste, and mouthfeel were increased while those for clearness, palatability, and meaty ones were decreased with lapse of fermentation. The numbers of total cell and lactic acid bacterial counts of Dongchimi has increased until day 13 and then decreased in the later stages. Total cell count and lactic acid bacterial counts of Naengmyon broth also increased until the 13th day and then they began to decrease. It was also proven that slightly over-ripened Dongchimi liquid was more preferable for adding into Naengmyon broth. Granting the optimum ripening period of Dongchimi liquid itself to be 13 days, both Treatment A and Treatment B were evenly favored using Dongchimi liquids slightly over-ripened at days 13 to 17. However, Treatment A was more favored than Treatment B when Dongchimi liquid over-ripened for 20 to 26 days was used.