• Title/Summary/Keyword: two powder method

Search Result 423, Processing Time 0.029 seconds

Effects of the Powder Agglomeration on Vibrating Minimum Ignition Energy Measurement System for Powder (진동형 분진 최소착화에너지측정장치에서 분진 응집현상이 미치는 영향)

  • ;;;;;;M. Yamaguma;T. Kodama;W.L.Cheung
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.48-53
    • /
    • 1999
  • It is widely recognized that Hartmann tube for measuring the minimum ignition energy(MIE) of powder. But It requires long time and operational skills for measuring. As a variety of new fine powders are being produced day by day in industry, Japen has been developing a measurement system which employs a new method to create a dust/air mixture in a miniature combustion box. In this system, by vibration, the powder is successively fed downward through a hopper made up of metal mesh, and then it is formed into a thin, certain-like, dust/air mixture. With this new apparatus, three types of powder-Lycopodium, Anthraquinone, and Polyacry-lonitrile-were tested and the data of MIE were compared with those of a conventional apparatus (the Hartmann tube). Two of them agreed satisfactory, but the other, Anthraquinone, showed quite different values. It is guessed that the agglomerations of the powder particles appear because of particle shapes, static-charge and humidity.

  • PDF

Prediction of Material Removal and Surface Roughness in Powder Blasting using Neural Network and Response Surface Analysis (신경회로망 및 반응표면분석법을 이용한 파우더 블라스팅시의 표면거칠기 및 재료제거량 예측)

  • Park, Dong-Sam;Yoo, Woo-Sik;Jin, Quan-Qia;Seong, Eun-Je;Han, Jin-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Powder blasting technique has been considered one of the most appropriate micro machining methods for hard and brittle materials, since the productivity is high and the heat layers caused by material removal are very thin. Recent development of special purposed parts, such as the parts for semiconductor processing, the parts for LCD, sensors for micro machine fabrication and so on, has been expanded. Thus, it is essential to develop powder blasting technologies for micromachining of hard and brittle materials such as glass, ceramics and so on. In this paper, the characteristics of powder blasted glass surface were tested under various blasting parameters. Finally, we proposed a predictive model for powder blasting process using the neural network and the response surface method. Detail analysis of the simulation results is carried out and the performance of two predictive models is compared.

  • PDF

Sintering Characteristics of Nickel Silicide Alloy (니켈 실리사이드 화합물의 소결특성)

  • Byun, Chang-Sop;Lee, Sang-Hou
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.

The Strength Properties of Concrete Used Stone Powder Sludge as Siliceous Material (실리카질 재료로서 석분 슬러지를 사용한 콘크리트의 강도 특성)

  • Jeong Ji Yong;Choi Sun Mi;Kawg Eun Gu;Choi Se Jin;Lee Seong Yeon;Kim Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.85-88
    • /
    • 2005
  • The stone powder sludge occurred at aggregate production process is classified the specified waste, so it is disposed by appropriate method. But the problems of the shortage of the disposal-site, the environment pollution, and the increase of disposal cost can be occurred in handling process, therefore the stone powder sludge is required the development of recycling technique. The stone powder sludge includes SiO2 of about $63\%$. This characteristic is important at the production of hardened specimens under condition of hydro-thermal reaction. In this study, we investigated the strength properties of concrete used stone powder sludge as siliceous material. The test results under condition of hydro-thermal reaction shows the two main facts. The first, the stone powder sludge is affected to fluidity because the surface of the stone powder sludge has characteristics of flakily and angularity. The second, weight content of the stone powder sludge, is not effective factor to the properties of strength.

  • PDF

Strength Properties of Recycled Concrete Containing Water-redispersible Copolymer Powder (재유화형분말수지를 혼입한 재생콘크리트의 강도 특성)

  • Kim, In-Su;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.128-134
    • /
    • 2005
  • This study was performed to evaluate the strength and durability properties of recycled concrete containing water - redispersible copolymer powder(WRP) and blast furnace slag powder(BSP) [RCWS]. Material used were cemente, recycled coarse aggregare, natural fine aggregate, water-redispersible copolymer powder, blast-furnace slag powder. Especially, Water-redispersible powder was used for blending with Inorganic binders such as cemente, gypsum and hydrated lime etc. First of all, Mixed ratio method of RCWS made Two Type. One was called type-1 which used to BSP content 5% and WRP(Water-redispersible powder) content 0%, 1%, 2%, 3%, 4%, 5%, 6%. respectively. Another was called Type-2 which used to BSP(blast furnace slag powder)content 10% and WRP(Water-redispersible powder) content 0%, 1%, 2%, 3%, 4%, 5%, 6%. respectively. According to the experimental results of (RCWS), Incase Type-2 at curing age 28days, Compressive strength, pulse velocity and dynamic modulous of elasticity were shown higher than Type-1 and The more WRP content increasing($0%{\sim}6%$) was the lower Compressive strength, Pulse velocity and Dynamic modulous of elasticity. Water absorption ratio was in the range of $3.85%\;{\sim}\;3.23%$, it was almost equal to Type-1, 2 but Increasing the WRP content($0%{\sim}6%$), The water absorption ratio is decreased.

  • PDF

Microstructure of W-Cu Composite Powders with Variation of Milling Method during Mechanochemical Process (기계화학적 공정의 밀링 방법에 따른 W-Cu 복합분말의 미세조직)

  • 이강원;김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.329-335
    • /
    • 2002
  • Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using $WO_3-CuO$ mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in $H_2$ atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.

A Study on Powder Electroluminescencent Device using ZnS:Cu (ZnS:CU를 이용한 후막 전계 발광소자에 관한 연구)

  • 이종찬;박대희;박용규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.121-124
    • /
    • 1998
  • Generally the structure of powder electroluminescent devices (PELDs) on ITO-film was makeup of the ZnS:Cu phosphor layer and BaTiO$_3$ insulating layer. The active layer, which consists of a suitably doped ZnS powder mixed in a dielectric, is sandwiched between two electrodes; one of which are ITO film and the other is aluminum. In this paper, three kinds of powder eleotroluminescent devices (PELDs) : WK-A(ITO/BaTiO$_3$/ZnS:Cu/Silver paste). WK-B(ITO/BaTiO$_3$+ZnS:Cu/Silver paste) and WK-C(ITO/BaTiO$_3$/ZnS:Cu/BaTiO$_3$/Silver paste), fabricated by spin coating method, were investigated. To evaluate the luminescence properties of three kinds of PELDs, EL emission spectroscopy, transferred charge density and time response of EL emission intensity under square wave voltage driving were measured.

  • PDF

Synthesis of Two-Component Titanate Powders Using Ethylene Glycol Solution (에틸렌글리콜 용액을 이용한 2성분계 Titanate 분말의 합성)

  • 이상진;권명도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.346-351
    • /
    • 2002
  • Pure and fine, two-component titanate powders (barium titanate, calcium titanate etc.) were synthesized by an ethylene glycol method. Titanium isopropoxide and other metal ionic salts were dissolved in liquid-type ethylene glycol without any precipitation. In non-aqueous system, the amount of ethylene glycol affected the solubility and homogeneity of metal cation sources in the solution. At the optimum amount of the polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. Most of the synthesized powders had sub-micron or nano-size primary particles after calcination and the agglomerated calcined powders were easily ground by ball milling process. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after ball milling. The crystallization behavior and the microstructures of the calcined powders were affected on the ethylene glycol content.

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

Synthesis of $WS_2$ Solid Lubricant ($WS_2$ 고체 윤활제의 합성)

  • 신동우;윤대현;황영주;김성진;김인섭
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 1997
  • The tungsten disulfide $(WS_2)$ solid lubricant was synthesized by two different reaction processes, i.e., the reaction between $CS_2$ gas phase and solid $WO_3$powder, and the vapour phase transport method of tungsten and sulfur in a high vacuum. The chemical and physical characteristics of synthesized $WS_2$powder were analyzed in terms of the average particle size, morphology, crystalline phase etc. in comparison with those of commercial $WS_2$powder. The solid $WO_3$ powder with the average size of 0.2 ${\mu}{\textrm}{m}$ was reacted with $CS_2$gas flowed with$N_2$or 96%$N_2{\times}4%H_2$forming gas for 36 h and 24 h at 90$0^{\circ}C$ respectively. $WS_2$ crystalline phase was then formed through the intermediate phase of .$W_{20}O_{58}$ In the case of vapour phase transport method, the 3.5 wt% iodine was added as a vapour transport reagent into the composition of tungsten and sulfur powders maintaining a constant molar ratio of W:S=1:2.2. The mixture was then heat treated at 85$0^{\circ}C$ for 2 weeks in vacuum. The reaction product obtained showed the average size of 12 ${\mu}{\textrm}{m}$ and the hexagonal plate shape of typical solid lubricant with 2H-$WS_2$crystalline phase.