• 제목/요약/키워드: two dampers

검색결과 231건 처리시간 0.023초

점성유체 감쇠기의 동특성에 관한 실험적 연구 (An Experimental Study of the Dynamic Characteristics of Viscous Fluid Dampers)

  • 권형오
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.243-248
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two types : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate, relative velocity between resistant plate and base plate, oil film thickness of the viscous fluid, but the temperature effect was neglected. The numerical model was established by assuming an non-Newtonian fluid behavior. The test results were summarized by the equation of F= 0.0308(ν/d)0.5125. Using the obtained for a real structure design was introduced.

  • PDF

TMD를 이용한 고속철도교량의 진동감소에 관한 연구 (Vibration Reduction of High-Speed Railway Bridges by Tuned Mass Dampers)

  • 오종환;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1261-1267
    • /
    • 2005
  • At this paper Dynamic respones of bridges for the Korean high-speed railway are analyzed by a modal analysis. To control vibration of bridges, Tuned Mass Damper(TMD) that is passive type control device is used. Opimize and prove it. Newmark method is used for a numerical analysis. In case of vehicle is modeled for moving mass that considers the effects of the moving. Also this paper is assumped as the simple supported Bernoulli-Euler beam and considered two dimensional Interaction motion between vehicle and bridge.

  • PDF

Retrofitting of a weaker building by coupling it to an adjacent stronger building using MR dampers

  • Abdeddaim, Mahdi;Ounis, Abdelhafid;Shrimali, Mahendra K.;Datta, Tushar K.
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.197-208
    • /
    • 2017
  • Among various retrofitting strategies, use of semi-active control for retrofitting a building structure has gained momentum in recent years. One of the techniques for such retrofitting is to connect a weaker building to an adjacent stronger building by semi-active devices, so that performances of a weaker building are significantly improved for seismic forces. In this paper, a ten storey weaker building is connected to an adjacent stronger building using magneto-rheological (MR) dampers, for primarily improving the performance of the weaker building in terms of displacement, drift and base shear. For this, a fuzzy logic controller is specifically developed by fuzzyfying the responses of the coupled system. The performance of the control strategy is compared with the passive-on and passive-off controls. Pounding Mitigation between the two buildings is also investigated using all three control strategies. The results show that there exists a fundamental frequency ratio between the two buildings for which maximum control of the weaker building response takes place with no penalty on the stronger building. There exists also a fundamental frequency ratio where control of the weaker building response is achieved at the expense of the amplification of the stronger building. However, coupling strategy always improves the possibility of pounding mitigation.

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

Identification of the Closed Loop Systems using the Signal Compression Method

  • Toshitaka UMEMOTO;I, Tomoharu-Do;Shoichiro FUJISAWA;Takeo YOSHIDA
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.318-322
    • /
    • 1998
  • An Electro Magnetic Suspension System, which has two floating masses connected with springs and dampers, can not keep its equilibrium when it is solved as an ordinary quartic mathematical model. So, a two dimensional con-troller, designed with quadratic mathematical model assuming the two mass model to be a rigid body, was used. As the result, the system floated stably. Therefore, we measured the transfer performances of this closed loop system contained this controller using the compression signal method proposed by N.Aoshima and identified the parameters of this system. Finally, we compared these parameters with the computing results of quartic mathematical model.

  • PDF

2도체 송전선로의 스페이서 취부방식 연구 (A Study on the Spacer Installation Method for 2-Conductor Bundle Transmission Lines)

  • 민병욱;김우겸;최한열;박기용;김원진;박재웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.333-334
    • /
    • 2008
  • Overhead transmission lines are classified by the number of sub conductors per phase. Korean transmission lines use two, four, or six-conductor bundle. Bundle of conductors must have spacers or spacer dampers which keep the proper distance between sub conductors. They can prevent conductors from being vibrated or twisted due to the wind. As for the two-conductor bundle, alternating current flow generates absorption force between sub conductors which may cause a collision of sub conductors. To prevent sub conductors from being vibrated, twisted, and collided, spacer or spacer damper installation method is designed considering vibration characteristics of sub conductors. We have spacer installation method for four or six-conductor bundle lines. However, we don't have it for two-conductor bundle ones. So we have installed spacers at regular intervals in two-conductor bundle lines, and it caused rigid body oscillation of conductors due to the wind which made a flashover between conductors. This paper introduces a vibration characteristic analysis of two-conductor bundle and proposes a spacer installation method for two-conductor bundle lines.

  • PDF

댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델 (Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir Systems)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.143-150
    • /
    • 2000
  • A physical lumped parameter model is proposed for the time domain analysis of dam-reservoir system. The exact solution of transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and the domains. Mass and damping coefficient are obtained from asymptotic behavior of the frequency domain solution. Further refinement to the lumped model is made by approximating the kernel function of the convolution integral in the exact solution. Finally a new physical lumped parameter model is proposed that consists of two masses, a spring and two dampers for each mode. It is demonstrated that new lumped parameter model of transmitting boundary can give excellent results.

  • PDF

Modeling and identification of a class of MR fluid foam dampers

  • Zapateiro, Mauricio;Luo, Ningsu;Taylor, Ellen;Dyke, Shirley J.
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.101-113
    • /
    • 2010
  • This paper presents the results of a series of experiments conducted to model a magnetorheological damper operated in shear mode. The prototype MR damper consists of two parallel steel plates; a paddle covered with an MR fluid coated foam is placed between the plates. The force is generated when the paddle is in motion and the MR fluid is reached by the magnetic field of the coil in one end of the device. Two approaches were considered in this experiment: a parametric approach based on the Bingham, Bouc-Wen and Hyperbolic Tangent models and a non parametric approach based on a Neural Network model. The accuracy to reproduce the MR damper behavior is compared as well as some aspects related to performance are discussed.

초청정 클린룸 공조방식에 따른 기류특성에 관한 수치해석 (A Numerical Analysis on the Airflow Characteristics in Super Cleanrooms with Different Design Types)

  • 노광철;이승철;오명도
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.751-761
    • /
    • 2003
  • We performed the numerical analysis on the airflow characteristics in the two type of cleanroom systems, which are the axial fan type (AFT) and the fan filter unit (FFU). A computational fluid dynamic model was applied to investigate and compare the nonuniformity, the deflection angle and the air ventilation effectiveness of the two designs of cleanrooms when dampers are adjusted and not adjusted. And the flow-resistance models of the various components were used in this simulation. We know that the airflow characteristics of the cleanrooms are largely affected by damper adjusting And we also find out that the FFU system is superior to the AFT system through the comparison of the cleanroom performance indices.