• Title/Summary/Keyword: twitter data

Search Result 307, Processing Time 0.027 seconds

Storm-Based Dynamic Tag Cloud for Real-Time SNS Data (실시간 SNS 데이터를 위한 Storm 기반 동적 태그 클라우드)

  • Son, Siwoon;Kim, Dasol;Lee, Sujeong;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • In general, there are many difficulties in collecting, storing, and analyzing SNS (social network service) data, since those data have big data characteristics, which occurs very fast with the mixture form of structured and unstructured data. In this paper, we propose a new data visualization framework that works on Apache Storm, and it can be useful for real-time and dynamic analysis of SNS data. Apache Storm is a representative big data software platform that processes and analyzes real-time streaming data in the distributed environment. Using Storm, in this paper we collect and aggregate the real-time Twitter data and dynamically visualize the aggregated results through the tag cloud. In addition to Storm-based collection and aggregation functionalities, we also design and implement a Web interface that a user gives his/her interesting keywords and confirms the visualization result of tag cloud related to the given keywords. We finally empirically show that this study makes users be able to intuitively figure out the change of the interested subject on SNS data and the visualized results be applied to many other services such as thematic trend analysis, product recommendation, and customer needs identification.

Classification of Public Perceptions toward Smog Risks on Twitter Using Topic Modeling (Topic Modeling을 이용한 Twitter상에서 스모그 리스크에 관한 대중 인식 분류 연구)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.53-79
    • /
    • 2017
  • The main purpose of this study was to detect and classify public perceptions toward smog disasters on Twitter using topic modeling. To help achieve these objectives and to identify gaps in the literature, this research carried out a literature review on public opinions toward smog disasters and topic modeling. The literature review indicated that there are huge gaps in the related literature. In this research, this author formed five research questions to fill the gaps in the literature. And then this study performed research steps such as data extraction, word cloud analysis on the cleaned data, building the network of terms, correlation analysis, hierarchical cluster analysis, topic modeling with the LDA, and stream graphs to answer those research questions. The results of this research revealed that there exist huge differences in the most frequent terms, the shapes of terms network, types of correlation, and smog-related topics changing patterns between New York and London. Therefore, this author could find positive answers to the four of the five research questions and a partially positive answer to Research question 4. Finally, on the basis of the results, this author suggested policy implications and recommendations for future study.

Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images (텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술)

  • Kim, Eun Yi;Ko, Eunjeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.419-431
    • /
    • 2018
  • In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.

Exploring Opinions on COVID-19 Vaccines through Analyzing Twitter Posts (트위터 게시물 분석을 통한 코로나바이러스감염증-19 백신에 대한 의견 탐색)

  • Jung, Woojin;Kim, Kyuli;Yoo, Seunghee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.4
    • /
    • pp.113-128
    • /
    • 2021
  • In this study, we aimed to understand the public opinion on COVID-19 vaccine. To achieve the goal, we analyzed COVID-19 vaccine-related Twitter posts. 45,413 tweets posted from March 16, 2020 to March 15, 2021 including COVID-19 vaccine names as keywords were collected. The 12 vaccine names used for data collection included 'Pfizer', 'AstraZeneca', 'Modena', 'Jansen', 'NovaVax', 'Sinopharm', 'SinoVac', 'Sputnik V', 'Bharat', 'KhanSino', 'Chumakov', and 'VECTOR' in the order of the number of collected posts. The collected posts were analyzed manually and automatedly through keyword analysis, sentiment analysis, and topic modeling to understand the opinions for the investigated vaccines. According to the results, there were generally more negative posts about vaccines than positive posts. Anxiety about the aftereffects of vaccination and distrust in the efficacy of vaccines were identified as major negative factors for vaccines. On the contrary, the anticipation for the suppression of the spread of coronavirus following vaccination was identified as a positive social factor for vaccines. Different from previous studies that investigated opinions about COVID-19 vaccines through mass media data such as news articles, this study explores opinions of social media users using keyword analysis, sentiment analysis, and topic modeling. In addition, the results of this study can be used by governmental institutions for making policies to promote vaccination reflecting the social atmosphere.

Countermeasure strategy for the international crime and terrorism by use of SNA and Big data analysis (소셜네트워크분석(SNA)과 빅데이터 분석을 통한 국제범죄와 테러리즘 대응전략)

  • Chung, Tae Jin
    • Convergence Security Journal
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2016
  • This study aims to prevent the serious threat from dangerous person or group by responding or blocking or separating illegal activities by use of SNA: Social Network Analysis. SNA enables to identify the complex social relation of suspect and individuals in order to enhance the effectiveness and efficiency of investigation. SNS has rapidly developed and expanded without restriction of physical distance and geo-location for making new relation among people and sharing large amount of information. As rise of SNS(facebook and twitter) related crimes, terrorist group 'ISIS' has used their website for promotion of their activity and recruitment. The use of SNS costs relatively lower than other methods to achieve their goals so it has been widely used by terrorist groups. Since it has a significant ripple effect, it is imperative to stop their activity. Therefore, this study precisely describes criminal and terrorist activities on SNS and demonstrates how effectively detect, block and respond against their activities. Further study is also suggested.

Unsupervised Scheme for Reverse Social Engineering Detection in Online Social Networks (온라인 소셜 네트워크에서 역 사회공학 탐지를 위한 비지도학습 기법)

  • Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2015
  • Since automatic social engineering based spam attacks induce for users to click or receive the short message service (SMS), e-mail, site address and make a relationship with an unknown friend, it is very easy for them to active in online social networks. The previous spam detection schemes only apply manual filtering of the system managers or labeling classifications regardless of the features of social networks. In this paper, we propose the spam detection metric after reflecting on a couple of features of social networks followed by analysis of real social network data set, Twitter spam. In addition, we provide the online social networks based unsupervised scheme for automated social engineering spam with self organizing map (SOM). Through the performance evaluation, we show the detection accuracy up to 90% and the possibility of real time training for the spam detection without the manager.

A Method of Identifying Ownership of Personal Information exposed in Social Network Service (소셜 네트워크 서비스에 노출된 개인정보의 소유자 식별 방법)

  • Kim, Seok-Hyun;Cho, Jin-Man;Jin, Seung-Hun;Choi, Dae-Seon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1103-1110
    • /
    • 2013
  • This paper proposes a method of identifying ownership of personal information in Social Network Service. In detail, the proposed method automatically decides whether any location information mentioned in twitter indicates the publisher's residence area. Identifying ownership of personal information is necessary part of evaluating risk of opened personal information online. The proposed method uses a set of decision rules that considers 13 features that are lexicographic and syntactic characteristics of the tweet sentences. In an experiment using real twitter data, the proposed method shows better performance (f1-score: 0.876) than the conventional document classification models such as naive bayesian that uses n-gram as a feature set.

Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique (트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.419-426
    • /
    • 2018
  • Due to the FMD(foot-and-mouth disease), the domestic animal husbandry and related industries suffer enormous damage every year. Although various academic researches related to FMD are ongoing, engineering studies on the social effects of FMD are very limited. In this study, we propose a systematic methodology to analyze emotional responses of regular citizens on FMD using text mining techniques. The proposed system first collects data related to FMD from the tweets posted on Twitter, and then performs a polarity classification process using a deep-learning technique. Second, keywords are extracted from the tweet using LDA, which is one of the typical techniques of topic modeling, and a keyword network is constructed from the extracted keywords. Finally, we analyze the various social effects of regular citizens on FMD through keyword network. As a case study, we performed the emotional analysis experiment of regular citizens about FMD from July 2010 to December 2011 in Korea.

Social media comparative analysis based on multidimensional scaling

  • Lee, Hanjun;Suh, Yongmoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.665-676
    • /
    • 2014
  • As social media draws attention as a business tool, organizations, large or small, are trying to exploit social media in their business. However, lack of understanding the characteristics of each social media led them to develop a naive strategy for dealing with social media. Thus, this study aims to deepen the understanding by comparatively analyzing how social media users perceive (the image of) each social media. Facebook, Twitter, YouTube, Blogs, Communities and Cyworld were chosen for our study and data from 132 respondents were analyzed using multidimensional scaling technique. The results show that there are meaningful differences in users' perception of social media attributes, which are grouped into four; information feature, motivation, promotion tool, usability. It is also analyzed whether such differences can be found between male and female users. (Such differences are also analyzed in both male and female users' perceptions.) Further, we discuss some implications of the research results for both practitioners and researchers.

Discovery of Urban Area and Spatial Distribution of City Population using Geo-located Tweet Data (위치기반 트윗 데이터를 이용한 도심권 추정과 인구의 공간분포 분석)

  • Kim, Tae Kyu;Lee, Jin Kyu;Cho, Jae Hee
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.131-140
    • /
    • 2019
  • This study compares and analyzes the spatial distribution of people in two cities using location information in twitter data. The target cities were selected as Paris, a traditional tourist city, and Dubai, a tourist city that has recently attracted attention. The data was collected over 123 days in 2016 and 125 days in 2018. We compared the spatial distribution of two cities according to the two periods and residence status. In this study, we have found a hot place using a spatial statistical model called dart-shaped space division and estimated the urban area by reflecting the distribution of tweet population. And we visualized it as a CDF (cumulative distribution function) curve so that the distance between all the tweets' occurrence points and the city center point can be compared for different cities.