• Title/Summary/Keyword: tweet analysis

Search Result 76, Processing Time 0.024 seconds

The Hangul Tweet Sentiment Analysis System using Opinion Mining (오피니언 마이닝을 이용한 한글 트윗 감정분석 시스템)

  • Eo, Mun-Seon;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1145-1146
    • /
    • 2013
  • 인터넷과 스마트폰의 발달로 SNS서비스의 사용자와 데이터가 활발하게 증가하고 있다. 이로 인하여 SNS 데이터의 가치와 신뢰성이 점점 증가하고 있으며, 이러한 추세에 따라 여러 연구와 실험을 통하여 데이터를 분석하고 분석 결과를 제공하는 서비스가 증가하고 있다. 본 논문에서는 이러한 배경을 바탕으로 특정 키워드를 포함하고 있는 한글 트윗을 검색하여 해당 트윗에 대한 연관 키워드와 감정 키워드를 분석해서 출력해주는 시스템을 개발한다.

Exploring Feature Selection Methods for Effective Emotion Mining (효과적 이모션마이닝을 위한 속성선택 방법에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • In the era of SNS, many people relies on it to express their emotions about various kinds of products and services. Therefore, for the companies eagerly seeking to investigate how their products and services are perceived in the market, emotion mining tasks using dataset from SNSs become important much more than ever. Basically, emotion mining is a branch of sentiment analysis which is based on BOW (bag-of-words) and TF-IDF. However, there are few studies on the emotion mining which adopt feature selection (FS) methods to look for optimal set of features ensuring better results. In this sense, this study aims to propose FS methods to conduct emotion mining tasks more effectively with better outcomes. This study uses Twitter and SemEval2007 dataset for the sake of emotion mining experiments. We applied three FS methods such as CFS (Correlation based FS), IG (Information Gain), and ReliefF. Emotion mining results were obtained from applying the selected features to nine classifiers. When applying DT (decision tree) to Tweet dataset, accuracy increases with CFS, IG, and ReliefF methods. When applying LR (logistic regression) to SemEval2007 dataset, accuracy increases with ReliefF method.

Hotspot Analysis of Korean Twitter Sentiments (한국어 트위터 감정의 핫스팟 분석)

  • Lim, Joasang;Kim, Jinman
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • A hotspot is a spatial pattern that properties or events of spaces are densely revealed in a particular area. Whereas location information is easily captured with increasing use of mobile devices, so is not our emotion unless asking directly through a survey. Tweet provides a good way of analyzing such spatial sentiment, but relevant research is hard to find. Therefore, we analyzed hotspots of emotion in the twitter using spatial autocorrelation. 10,142 tweets and related GPS data were extracted. Sentiment of tweets was classified into good or bad with a support vector machine algorithm. We used Moran's I and Getis-Ord $G_i^*$ for global and local spatial autocorrelation. Some hotspots were found significant and drawn on Seoul metropolitan area map. These results were found very similar to an earlier conducted official survey of happiness index.

Analysis and Implications of Twitter Data during the 2012 Election

  • Yun, Hongwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.7-13
    • /
    • 2014
  • Twitter is a microblogging service that allows users to post short messages on a variety of topics in real-time. In this work, we analyze Twitter messages posted during the 2012 elections and find those implications. This study uses Twitter messages related to the 2012 South Korean presidential campaign. The three main candidates are represented by the abbreviations A, M, and P. According to the statistical analysis, the number of tweets and re-tweets for candidate P was relatively stable over the entire campaign period. Candidate P had the highest percentage of terms related to elections pledges, and candidates A and M were judged to be a little bit poorer with respect to campaign promises. The positive terms ratio for candidate P was higher than those for the other two candidates. The negative terms ratio in the Twitter messages of P was considerably smaller than those of candidates A and M. After considering all these results, it is suggested cautiously that Twitter messages posted during an election campaign could be correlated with the outcome of the election.

Geo-spatial Analysis of the Seoul Subway Station Areas Using the Haversine Distance and the Azimuth Angle Formulas (다트판형 공간분할 기법을 이용한 서울지역 지하철 역세권 분석)

  • Cho, Jae Hee;Baik, Eui Young
    • Journal of Information Technology Services
    • /
    • v.17 no.4
    • /
    • pp.139-150
    • /
    • 2018
  • This paper investigated the human distribution in subway station areas in Seoul, using geotweets and subway ridership data. Eight stations were selected from the districts of Gangnam and Gangbuk. Geotweets located within a 600-meter radius of the central coordinates of each station were extracted, and distances between the center of station and each tweet location were calculated. Donut-shaped dimension and pie-shaped dimension were generated, using the Haversine distance formula and the Azimuth angle formula respectively. By combining the two dimensions, Dartboard-shaped space division is created. Popular places within the subway station areas identified from this research are almost the same as the current well-known popular places, and this is an important case showing that people send tweets from various places where they engage in daily activities. We expect this study can be a methodological guideline for social scientists who use spatio-temporal or GPS data for their research.

Analyzing Spatial Correlation between Location-Based Social Media Data and Real Estates Price Index through Rasterization (격자기반 분석을 통한 위치기반 소셜 미디어 데이터와 부동산 가격지수 간의 공간적 상관성 분석 연구)

  • Park, Woo Jin;Eo, Seung Won;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • In this study, the spatial relevance between the regional housing price data and the spatial distribution of the location-based social media data is explored. The spatial analysis with rasterization was applied to this study, because the both data have a different form to analyze. The geo-tagged Twitter data had been collected for a month and the regional housing price index about sales and lease were used. The spatial range of both data includes Seoul and the some parts of the metropolitan area. 2,000m grid was constructed to consider the different spatial measure between two data, and they were combined into the constructed grids. The Hotspot Analysis was operated using the combined dataset to see the comparison of spatial distribution, and the bivariate spatial correlation coefficients between two data were measured for the quantitative analysis. The result of this study shows that Seocho-gu area is detected as a common hotspot of tweet and housing sales price index data. though the spatial relevance is not detected between tweet and housing lease price index data.

Citizen Sentiment Analysis of the Social Disaster by Using Opinion Mining (오피니언 마이닝 기법을 이용한 사회적 재난의 시민 감성도 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Recently, disaster caused by social factors is frequently occurring in Korea. Prediction about what crisis could happen is difficult, raising the citizen's concern. In this study, we developed a program to acquire tweet data by applying Python language based Tweepy plug-in, regarding social disasters such as 'Nonspecific motive crimes' and 'Oxy' products. These data were used to evaluate psychological trauma and anxiety of citizens through the text clustering analysis and the opinion mining analysis of the R Studio program after natural language processing. In the analysis of the 'Oxy' case, the accident of Sewol ferry, the continual sale of Oxy products of the Oxy had the highest similarity and 'Nonspecific motive crimes', the coping measures of the government against unexpected incidents such as the 'incident' of the screen door, the accident of Sewol ferry and 'Nonspecific motive crime' due to misogyny in Busan, had the highest similarity. In addition, the average index of the Citizens sentiment score in Nonspecific motive crimes was more negative than that in the Oxy case by 11.61%p. Therefore, it is expected that the findings will be utilized to predict the mental health of citizens to prevent future accidents.

Coocurrence Relation Analysis and Visualization in Tweet for Food Safety Domain (식품안전 관련 트위터 정보의 연관 관계 분석 및 시각화)

  • So, Hyun-Su;Kang, Seung-Shik;Oh, Se-Wook
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.305-306
    • /
    • 2016
  • 식품안전 사고가 발생했을 때 뉴스, 인터넷 기사를 통해 정보를 인지하기 전에 그 음식을 섭취하는 경우가 발생하는 문제점 최소화하기 위하여 실시간 트윗 분석으로 현재 발생한 식품안전 키워드와 어느 지역에서 발생했는지를 신속하게 파악하고, 키워드 연관관계 분석 프로그램을 활용하여 정확한 정보를 추출한다. 이와 더불어, SNS 등 다양한 정보 소스로부터 추출한 정보를 간단명료하게 파악하기 위해서 워드 클라우드 등 데이터 시각화 기법을 활용하여 시각화로 정보를 제공한다. 이 기법은 식품안전 뿐만 아니라 최근 발생한 콜레라 감염 발생과 같은 문제를 해결하기 위한 방법으로 활용될 수 있을 것이다.

  • PDF

Company Name Discrimination in Tweets using Topic Signatures Extracted from News Corpus

  • Hong, Beomseok;Kim, Yanggon;Lee, Sang Ho
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2016
  • It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.

SNS Analysis Related to Presidential Election Using Text Mining (텍스트 마이닝을 활용한 대선 관련 SNS 분석)

  • Kwon, Young-Woo;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF