• 제목/요약/키워드: turn off

검색결과 758건 처리시간 0.035초

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.

4.5kV/1.5kA급 IGCT 설계 및 특성분석 (Design of 4.5kV/1.5kA IGCT)

  • 김형우;김상철;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.357-360
    • /
    • 2003
  • In this paper, we designed 4.5kV/1.5kA IGCT devices. GCT thyristor has many superior characteristics compared with GTO thyristor, for examples; snubberless turn-off capability, short storage time, high turn-on capability, small turn-off gate charge and low total power loss of the application system containing device and peripheral parts such as anode reactor and snubber capacitance. In this paper we designed GCT thyristor devices, and analyzed static and dynamic characteristics of GCT thyristor depending on the minority carrier lifetime, n-base thickness and doping concentration of n-base region, respectively. Especially, turn-on and turn-off characteristics are very important characteristics for GCT thyristor devices. So, we considered above characteristic for design and analysis of GCT devices.

  • PDF

대용량 IGCT 소자의 정상상태 및 과도상태 특성 해석 (Static and Transient Simulation of High Power IGCT Devices)

  • 김상철;김형우;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.213-216
    • /
    • 2003
  • Recently a new high power device GCT (Gate Commutated Turn-off) thyristor has been successfully introduced to high power converting application areas. GCT thyristor has a quite different turn-off mechanism to the GTO thyristor. All main current during turn-off operation is commutated to the gate. Therefore, IGCT thyristor has many superior characteristics compared with GTO thyristor; especially, snubberless tum-off capacibility and higher turn-on capacibility. The basic structure of the GeT thyristor is same as that of the GTO thyristor. This makes the blocking voltage higher and controllable on-state current higher. The turn-off characteristic of the GCT thyristor is influenced by the minority carrier lifetime and the performance of the gate drive unit. In this paper, we present turn-off characteristics of the 2.5kV PT(Punch-Through) type GCT as a function of the minority carrier lifetime and variation of the doping profile shape of p-base region.

  • PDF

자기동조 제어에 의한 SRM의 최대 토크/효율 운전 (The Maximum Torque/Efficiency of SRM Driving for Self-Tuning Control)

  • 서종윤;차현록;김광헌;임영철;장도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.677-680
    • /
    • 2003
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. we present self-tuning control of SRM for maximum torque and efficiency with phase current and shaft position sensor During the sample time, micro-controller checks the number of pre-checked pulse. After micro-controller calculates between two data, it move forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, turn-on angle moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moves automatically to obtain the maximum torque and efficiency. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

Design Consideration for Structure of 2500-4500V RC-GCT

  • Kim E. D.;Kim S. C.;Zhang C. L.;Kim N. K.;Bai J. B.;Li J. H.;Lu J. Q.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.36-38
    • /
    • 2001
  • A basic structure of 2500V-4500V reverse-conducting GCT (RC-GCT) is given in this paper. The punch-through type (PT) is adopted for narrow N-base with high resistivity so that the fast turn-off and low on-state voltage can be achieved. The photo mask design was made upon the both turn-off performance and solution of separation between GCT and integrated freewheeling diode (FWD) part. The turn-on and turn-off characteristics for reserve-conducting gate commutated thyristors (RC-GCTs) were investigated by ISE simulation. Additionally, the local carrier lifetime control by proton irradiation was adopted so as not only to obtain the reduction of turn-off losses of GCT but also to reach a soft reverse recovering characteristics of FWD

  • PDF

Output Voltage Control Method of Switched Reluctance Generator using the Turn-off Angle Control

  • Kim Young-Jo;Choi Jung-Soo;Kim Young-Seok
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.414-417
    • /
    • 2001
  • SRG (Switched Reluctance Generator) have many advantages such as high efficiency, low cost, high-speed capability and robustness compared with characteristics of other machines. However, the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using PID controller that only controls turn-off angles while keeping turn-on angles of SRG constant. The linear characteristics between the generated current and the turn-off angle can be used to control the turn-off angle for load variations. Since the reference current for generation can be produced from an error between the reference and the real voltage, it can be controlled to keep the output voltage constant. The proposed control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and speed sensors. The proposed method is verified by experimental results.

  • PDF

높은 스위칭 주파수를 가지는 비엔나 정류기의 전류 품질 개선 (Letters Current Quality Improvement for a Vienna Rectifier with High-Switching Frequency)

  • 양송희;박진혁;이교범
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.181-184
    • /
    • 2017
  • This study analyzes the turn-on and turn-off transients of a metal-oxide-semiconductor field-effect transistor (MOSFET) with high-switching frequency systems. In these systems, the voltage distortion becomes serious at the output terminal of a Vienna rectifier by the turn-off delay of the MOSFET. The current has low-order harmonics through this voltage distortion. This paper describes the transient of the turn-off that causes the voltage distortion. The algorithm for reducing the sixth harmonic using a proportional-resonance controller is proposed to improve the current distortion without complex calculation for compensation. The reduction of the current distortion by high-switching frequency is verified by experiment with the 2.5-kW prototype Vienna rectifier.

LSRM의 Turn-off보상에 의한 퍼지로직 토크리플저감에 관한 연구 (A Study on Fuzzy Logic Torque Ripple Reduction by Turn-off Angle Compensation of LSRM)

  • 성호경;조정민;이종민;유문환;김동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1616-1618
    • /
    • 2005
  • In this paper, A fuzzy logic based turn-off angle compensator for torque ripple reduction in a linear switched reluctance motor is proposed. The turn-off angle, as a complex function of motor speed and current, is automatically changed for a wide speed range to reduce torque ripple. Simulation results are presented that show ripple reduction when the him-off angle compensator is used.

  • PDF

향상된 전기적 특성을 갖는 IGBT에 관한 연구 (A novel IGBT with improved electrical characteristics)

  • 구용서
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권3호
    • /
    • pp.168-173
    • /
    • 2013
  • 본 연구는 IGBT(Insulated Gate Bipolar Transistor)의 전기적 특성을 향상시키기 위해 새로운 구조의 IGBT를 제안하였다. 첫 번째 구조는 기존 IGBT 구조의 P-베이스 영역 우측 부분에 N+영역을 추가한 방법으로 기존 구조에 비해 빠른 Turn-off 시간과 낮은 전도 손실을 갖는 구조이다. 또한, 두 번째 구조는 게이트 우측 하단에 P+를 형성함으로써 Latching 전류를 향상시킨 구조이다. 시뮬레이션 결과 제안된 첫 번째 구조는 빠른 Turn-off 시간(3.4us), 낮은 순방향 전압강하(3.08V)의 특성을 보였으며, 두 번째 구조는 높은 Latching 전류(369A/?? ) 특성을 보였다. 따라서 본 논문은 제안된 두 가지의 구조를 하나로 결합한 구조로써 기존 IGBT보다 향상된 특성을 시뮬레이션을 통하여 확인하였다.