• 제목/요약/키워드: turbulent Schmidt number

검색결과 13건 처리시간 0.023초

도시 협곡에서 유입류 풍속과 난류 슈미트수에 대한 대기오염물질 확산의 민감도 연구 (A Study on Sensitivity of Pollutant Dispersion to Inflow Wind Speed and Turbulent Schmidt Number in a Street Canyon)

  • 왕장운;김재진
    • 대기
    • /
    • 제25권4호
    • /
    • pp.659-667
    • /
    • 2015
  • In this study, sensitivity of inflow wind speed and turbulent Schmidt number to pollutant dispersion in an urban street canyon is investigated, by comparing CFD-simulated results to wind-tunnel results. For this, we changed systematically inflow wind speed at the street-canyon height ($1.5{\sim}10.0m\;s^{-1}$ with the increment of $0.5m\;s^{-1}$) and turbulent Schmidt number (0.2~1.3 with interval of 0.1). Also, we performed numerical experiments under the conditions that turbulent Schmidt numbers selected with the magnitude of mean kinetic energy at each grid point were assigned in the street canyon. With the increase of the inflow wind speed, the model underestimated (overestimated) pollutant concentration in the upwind (downwind) side of the street canyon because of the increase of pollutant advection. This implies that, for more realistic reproduction of pollutant dispersion in urban street canyons, large (small) turbulent Schmidt number should be assigned for week (strong) inflow condition. In the cases of selectively assigned turbulent Schmidt number, mean bias remarkably decreased (maximum 60%) compared to the cases of constant turbulent Schmidt number assigned. At week (strong) inflow wind speed, root mean square error decreases as the area where turbulent Schmidt number is selectively assigned becomes large (small).

회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 직접수치모사 ( I ) - 높은 Schmidt 수에 대하여 - (Direct Numerical Simulation of Mass Transfer in Turbulent new Around a Rotating Circular Cylinder ( I ) - At Sc=1670 -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.837-845
    • /
    • 2005
  • In this paper, an investigation on high-Schmidt number (Sc=1670) mass transfer in turbulent flow around a rotating circular cylinder is carried out by Direct Numerical Simulation. The concentration field is computed for three different values of low Reynolds number, namely 161, 348 and 623 based on the cylinder radius and friction velocity. Statistical study reveals that the thickness of Nernst diffusive layer is very small compared with that of viscous sub-layer in the case of high Sc mass transfer. Strong correlation of concentration field with streamwise and vertical velocity components is observed. However, that is not the case with the spanwise velocity component. Instantaneous concentration visualization reveals that the length scale of concentration fluctuation typically decreases as Reynolds number increases. Statistical correlation between Sherwood number and Reynolds number is consistent with other experiments currently available.

회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한 (Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part I. 평균 농도장 및 저차 난류통계치 (REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART I. MEAN CONCENTRATION FIELD AND LOW-ORDER STATISTICS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.1-10
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. To show the effects of Reynolds number on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuations, turbulent mass fluxes, cross-correlation coefficient, turbulent diffusivity and turbulent Schmidt number are presented.

점착성, 비점착성 부유사 모형에 대한 Schmidt 수의 영향 (Effect of Schmidt Number on Cohesive and Non-cohesive Sediment Suspension Modeling)

  • 변지선;손민우
    • 한국수자원학회논문집
    • /
    • 제47권8호
    • /
    • pp.703-715
    • /
    • 2014
  • 본 연구는 Schmidt 수(${\sigma}_c$)에 따른 부유사의 부유 거동 변화 및 흐름 특성의 변화를 살펴본 후, 그에 따라 계산된 성층 흐름의 척도가 되는 Flux Richardson 수($Ri_f$)와 Gradient Richardson 수($Ri_g$)를 근거로 타당한 ${\sigma}_c$의 범위를 산정하는 것을 목적으로 수행되었다. 부유사의 종류를 점착성 유사와 비점착성 유사로 구분하였으며 진동 흐름과 흐름 조건을 가정하고 1차원 연직 수치 모형을 이용하여 수치 실험을 수행하였다. 이 과정에서 ${\sigma}_c$가 난류 감소효과와 관계되는 상수인 것에 근거하여 부유사의 존재로 인한 난류 감소효과 고려 여부에 따른 흐름 특성의 변화를 살펴보았다. 그 결과, 흐름 조건에 관계없이 ${\sigma}_c$의 크기에 따라 부유 거동이 일관된 경향을 나타내는 것이 확인 되었으며 난류 감소효과를 고려하지 않는 경우 유속 및 난류 에너지가 과대 산정 되는 결과가 나타났다. 부유로 인한 성층화 조건을 형성하는 $Ri_f$$Ri_g$의 범위에 기초하여 결과를 분석하고 ${\sigma}_c$가 0.3에서 0.5의 범위에 해당될 때 성층 흐름 내 유사의 수직 혼합이 유효하게 계산된다는 결론이 도출되었다.

후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달의 전산해석 (Numerical Study of Turbulent Mass Transfer around a Rotating Stepped Cylinder)

  • 윤동혁;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2378-2383
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream the step. Main focus was placed on the correlation between turbulent fluctuation and concentration field. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with the same flow configuration.

  • PDF

후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달 - 유동유발 부식 - (Turbulent Mass Transfer Around a Rotating Stepped Cylinder - Flow-Induced Corrosion -)

  • 윤동혁;양경수
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.799-806
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of DNS of turbulent flow in Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream of the step. Main focus was placed on the correlation between turbulence and mass transfer. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with a similar flow configuration.

Direct numerical simulation of passive scalar in decaying compressible turbulence

  • Li Xinliang;Fu Dexun;Ma Yanwen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.39-41
    • /
    • 2003
  • n this paper, direct numerical simulation of decaying compressible turbulence with passive scalar is performed by using 7th order upwind difference scheme or 8th order group velocity control scheme. The start Reynolds number (defined by Taylor scale) is 72 and turbulent Mach numbers are 0.2-0.9. The Schmidt numbers of passive scalar are 2-10. The Batchelor k-1 range are found in scalar spectra, and the high wavenumber spectra decays faster with increasing turbulent Mach number. The extend self-similarity (ESS) is found in the passive scalar in compressible turbulence.

  • PDF

가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석 (Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface)

  • 유경훈;오명도;명현국
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Due;Park Warn-Gyu;Duong Ngoe-Hai
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.253-254
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard ${\kappa}-{\varepsilon}$ , two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derived.

  • PDF