• 제목/요약/키워드: turbulence index

검색결과 70건 처리시간 0.021초

KWRF를 활용한 한반도 항공기 난류 지수 특성 분석 (The Analysis of the the characteristics of Korean peninsula Aircraft Turbulence Index using KWRF)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.89-99
    • /
    • 2010
  • The purpose of this study is analysis of Korean peninsula aircraft turbulence using the numerical weather prediction model, KWRF with the various turbulence index and pilot weather report data. Compared with the pilot weather report data and Calculated the turbulence index using the KWRF model result, many turbulence index show the similar horizontal distribution, except for the TUB2 and VWS. The analysis of vertical structure of turbulence, there are some difference each turbulence index respectively, but severe turbulence turn up in 15,000ft almost turbulence index. above 20,000ft height, intensity of turbulence vary each turbulence index. Through this turbulence study, It is founded on the research and development of the Korean peninsula aircraft turbulence

PIREP과 KWRF를 활용한 한반도 난류, 착빙 지수의 임계값 설정 및 검증 (A Verification of threshold of the aircraft turbulence index and icing index using PIREPs and KWRF on Korean peninsula)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제19권3호
    • /
    • pp.54-60
    • /
    • 2011
  • The purpose of this study is verification of threshold of the aircraft turbulence index and icing index using PIREPs and KWRF on Korean peninsula, to operational weather support. There is improvement in new threshold value made of the pilot weather report data and the turbulence and icing index from KWRF model result, using the ROC Diagram method. the accuracy is up to 0.6 compared with the precedent study result 0.5. Through this study, It is founded on the research and development of the Korean peninsula aircraft turbulence and icing.

고해상도 규모상세화 수치자료 산출체계(KMAPP)를 이용한 저고도 항공난류 진단 (Diagnosis of Low-Level Aviation Turbulence Using the Korea Meteorological Administration Post Processing (KMAPP))

  • 석재혁;최희욱;김연희;이상삼
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.1-11
    • /
    • 2020
  • In order to diagnose low-level turbulence in Korea, diagnostic indices of low-level turbulence were calculated from Aug 2016 to Jul 2019 using a Korea Meteorological Administration Post Precessing (KMAPP) developed by the National Institute Meteorological Sciences (NIMS), and the indices were evaluated using Aircaft Meteorological Data Relay (AMDAR). In the mean horizontal distribution of diagnostic indices calculated, severe turbulence was simulated along major domestic mountains, including near the Taebaek Mountains, the Sobaek Mountains and Hallasan Mountain on Jeju Island due to geographical factors. Later, detection performance was evaluated by calculating the KMAPP Low-Level Turbulencd index (KLT) on combined index, using AUC value of Individual diagnostic indices as a weight. The result showed that the AUC value of KLT was 0.73, and the detection performance was improved (0.02-0.13) when the index was combined. Also, when looking for the AMDAR data is divided into years, seasons, and altitudes, up to 0.94 AUC values were found in winter (DJF) and the surface (surface-1,000ft). By using high-resolution numerical data reflecting detailed terrain data, local turbulence distribution was well demonstrated and high detection performance was shown at low-level.

선박용 SCR 시스템에서 혼합기 구조에 따른 난류유동과 우레아 수용액의 혼합특성 (Effect of Mixer Structure on Turbulence and Mixing with Urea-water Solution in Marine SCR System)

  • 김태경;성연모;한승한;하상준;최경민;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.814-822
    • /
    • 2012
  • 선박용 SCR 시스템에서 유동 및 혼합특성을 개선하기 위해 상하유도 및 스월 형상의 혼합기가 고려되었다. 본 연구의 목적은 혼합기 구조에 따른 난류강도 및 균일지수(Uniformity Index)를 상세히 분석하여 SCR 성능을 개선하는 것이다. 그 결과, 촉매부 전단에서의 농도균일도는 혼합기를 사용하였을 경우 약 5% 개선됨을 알 수 있었다. 상하유도형 혼합기의 사용에 따라 주위에서 높은 RMS 수치 및 상대난류강도를 보이지만, 하류로 진행하면서 두 값은 감소하는 경향을 보였다. 스월형 혼합기의 경우 유동의 진행에 대해 RMS 수치와 상대난류강도의 감소가 비교적 적고 상대난류강도의 경우 상대적으로 균일한 분포를 보였다. 두 혼합기에서 발생하는 유동특성에 의해 혼합효과 및 혼합거리가 달랐음을 알 수 있었다.

기상청 현업 통합모델과 조종사기상보고 자료를 이용한 한국형 항공난류 예측시스템 개발 (Development of the Korean Aviation Turbulence Guidance (KTG) System using the Operational Unified Model (UM) of the Korea Meteorological Administration (KMA) and Pilot Reports (PIREPs))

  • 김정훈;전혜영
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.76-83
    • /
    • 2012
  • Korean aviation Turbulenc Guidance (KTG) system is developed using the operational unified model (UM) of the Korea Meteorological Administration (KMA) and pilot reports (PIREPs) over East Asia. The KTG system comprised of twenty turbulence diagnostics that represent various turbulence potentials and have the best forecasting skills, which are combined into a single ensemble-averaged index, namely KTG, at upper-(above FL250) and mid-(below FL250) levels. It is found that the overall performance of the KTG is higher than those produced from the one single best index, and satisfies the minimum criteria (80% accuracy) that the system is operationally useful in aviation industry.

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang;Banglian Xu;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.655-664
    • /
    • 2023
  • Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

Magnetic Turbulence Associated with Magnetic Dipolarizations in the Near-Tail of the Earth's Magnetosphere: Test of Anisotropy

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, the anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically, we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field, and compare them in order to identify possible anisotropic features. For this study, we identify a total of 47 dipolarization events in February 2008 using the magnetic field data observed by the THEMIS A, D and E satellites when they are situated near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that the degree of anisotropy, as defined by the ratio of the spectral index of the perpendicular components to that of the parallel component, can range from ~0.2 to ~2.6, and there are more events associated with the ratio greater than unity (i.e., the perpendicular index being greater than the parallel index) than those which are anisotropic in the opposite sense. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic, to some non-negligible degree. We then discuss how this result differs from what the theory of homogeneous, anisotropic, magnetohydrodynamic turbulence would predict.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

GCI 를 이용한 수직분사제트 수치모사의 검증 및 확인 (Verification and Validation of the Numerical Simulation of Transverse Injection Jets using Grid Convergence Index)

  • 원수희;정인석;최정열
    • 한국항공우주학회지
    • /
    • 제34권4호
    • /
    • pp.53-62
    • /
    • 2006
  • 초음속 주 유동으로의 수직분사에 의해 생성되는 2차원 정상상태 유동장에 대한 수치모사를 수행하였다. 난류효과를 위해서 무차원 벽면거리($y^+$)를 고려한 2방정식 k-${\omega}$ SST 모델을 사용하였다. 또한 격자계에 따른 오차범위를 나타내는 방법으로 GCI(Gird Convergence Index)를 사용하여 해의 수렴성을 측정하였다. 표면 압력분포, 박리거리, 침투높이 등에 대해 실험결과 및 다른 난류모델을 이용한 결과들과 비교하였다. k-${\omega}$ SST 난류모델은 낮은 압력비에 대해서 표면 압력분포 및 박리거리 등을 정확하게 예측하였다. 그러나 압력비가 증가함에 따라 수치적 예측이 실험결과와 차이를 보이고 있다. 상기한 모든 결과는 격자계에 따른 해의 수렴성의 오차범위 1% 이내에서 측정되었다.

GCI와 벽면격자거리를 고려한 2차원 분사유동의 검증 (VERIFICATION OF 2D INJECTION FLOWS WITH GCI AND NEAR-WALL GRID LINE SPACINGS)

  • 원수희;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.287-292
    • /
    • 2005
  • The flowfields generated by gaseous slot injection into a supersonic flow at a Mach number of 3.75 and a Reynolds number of $2.07{\times}10^7$ are simulated numerically. Fine-scale turbulence effects are represented by a two-equation(k-w SST model) closure model which includes $y^+$ effects on the turbulence model. Grid convergence index(GCI) is also considered to provide a measure of uncertainty of the grid convergence. Comparison is made with experimental data and other turbulence model in term of surface static pressure distributions, the length of the upstream separation region, and the penetration height. Results indicate that the k-w SST model correctly predicts mean surface pressure distribution and upstream separation length. However, it is also observed that the numerical simulation over predicts the pressure spike and penetration height compared with experimental data. All these results are taken within $1\%$ error band of grid convergence.

  • PDF