• Title/Summary/Keyword: turbulence energy

Search Result 660, Processing Time 0.026 seconds

Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center (냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석)

  • Yang, Sungjune;Kim, Youngjoo;Hur, Jun;Kim, Teasung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

Numerical Analysis of Electro-Hydrodynamic (EHD) Flows in Electrostatic Precipitators using Open Source Computational Fluid Dynamics (CFD) Solver (오픈 소스 전산 유체 역학 해석 프로그램을 이용한 전기집진기 내부 정전 유동 해석)

  • Song, Dong Keun;Hong, Won Seok;Shin, Wanho;Kim, Han Seok
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2013
  • The electrostatic precipitator (ESP) has been used for degrading atmospheric pollutants. These devices induce the electrical forces to facilitate the removal of particulate pollutants. The ions travel from the high voltage electrode to the grounded electrode by Coulomb force induced by the electric field when a high voltage is applied between two electrodes. The ions collide with gas molecules and exchange momentum with each other thus inducing fluid motion, electrohydrodynamic (EHD) flow. In this study, for the simulation of electric field and EHD flow in ESPs, an open source EHD solver, "espFoam", has been developed using open source CFD toolbox, OpenFOAM(R) (Open Field Operation and Manipulation). The electric potential distribution and ionic space charge density distribution were obtained with the developed solver, and validated with experimental results in the literature. The comparison results showed good agreement. Turbulence model is also incorporated to simulate turbulent flow; hence the developed solver can analyze laminar and turbulent flow. In distributions of electric potential and space charge, the distributions become distorted and asymmetric as the flow velocity increases. The effect of electrical drift flow was investigated for different flow velocities and the secondary flow in a flow of low velocity is successfully predicted.

Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer (접지층에서 대기난류의 역할과 에너지 평형)

  • Kwon, Byung-Hyuk;Kim, Geun-Hoi;Kim, Kwang-Ho;Kang, Dong-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • Heat energy exchange is very important processes in the coastal wetland ecosystems. We observed and analyzed the net radiation flux, the sensible heat flux, the latent heat flux and the soil heat flux, which are balanced in the heat energy balance, over a reclaimed land covered with reeds at Goheung, Jeonllanamdo where is horizontally plane. The atmospheric turbulence had been measured in order to estimate the heat transfer during 5 intensive observation periods (IOPs). It was considered that the soil consists of water, fine particles, and vegetation canopy that changes color and density according to the season. We examined the characteristics of the heat flux and the vegetation effect on the air temperature control. It was noted that the heat was transported mainly by latent heat flux in the summer season and the vegetation canopy decreased the daily temperature range due to the heat storage. The air temperature was lower at the IOPs site than near urban area. This showed that the coastal wetland covered with the vegetation control the thermal environment.

  • PDF

Readeveloping Turbulent Boundary Layer after Separation-Reattachment(I) (박리-재부착 이후의 재발달 난류경계층 I)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.780-788
    • /
    • 1989
  • An experimental study has been performed to investigate the process from nonequilibrium state to equilibrium state in redeveloping turbulent boundary layer beyond separation-reattachment using pitot tube and hot-wire anemometer. The model sued in the experiment has the form of a backward facing step which is assembled by a two-dimensional 4:1 half elipse and a plate. Measurements are carried out up to a distance of about 50 step height downstream of the step, where the reattachment observed at about x/h=6.5. The profiles of the shape factor H the Clauser parameter G and the coefficient of friction $C^{f}$ exhibited the characteristics similar to those of the equilibrium turbulent boundary layer from x/h=25, and the profiles of the trubulent quantities did from x/h=35. However, the wake region of the boundary layer does not seem to recover the equilibrium turbulent boundary layer even at x/h=50. By considering the distributions of the intermittency factor it has been noted that the turbulence structure changes gradually from a mixing layer to a turbulent boundary layer along downstream direction after reattachment. This becomes clearer as we analyse the one-dimensional energy spectra and the dissipation energy spectra which are measured and caculated at various downstream positions after the backward facing step.p.

Effects of Wave Focusing Device on Performance of OWC Chamber (OWC형 파력발전 공기실의 파랑집중장치의 효과에 대한 수치적인 연구)

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • Oscillating Water Column (OWC) device has been widely employed in the wave energy conversion. Wave Focusing Device (WFD) is proposed to be helpful for improving the operating performance of OWC chamber. In the present paper, a Numerical Wave Tank (NWT) using two-phase VOF model is utilized to simulate the generation and propagation of incident regular waves, water column oscillation inside the chamber. The NWT consists of the continuity equation, Reynolds-averaged Navier-Stokes equations and two-phase VOF functions. The standard k- turbulence model, the finite volume method, NITA-PISO algorithm and dynamic mesh technique are employed. Effects of WFD on the operating performance of OWC chamber are investigated numerically.

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Efficient Prediction of Broadband Noise of a Centrifugal Fan Using U-FRPM Technique (U-FRPM 기법을 이용한 원심팬 광대역소음의 효율적 예측)

  • Heo, Seung;Cheong, Chulung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Recently, a lot of studies have been made about the methods used to generate turbulent velocity fields stochastically in order to effectively predict broadband flow noise. Among them, the FRPM (Fast Random Particle Mesh) method which generates turbulence with specific statistical properties using turbulence kinetic energy and dissipation obtained from the steady solution of the RANS (Reynolds Averaged Navier-Stokes) equations has been successfully applied. However, the FRPM method cannot be applied to the flow noise problems involving intrinsic unsteady characteristics such as centrifugal fan. In this paper, to effectively predict the broadband noise generated by centrifugal fan, U-FRPM (unsteady FRPM) method is developed by extending the FRPM method to be combined with the unsteady numerical solutions of the unsteady RANS equations to generate the turbulence considered as broadband noise sources. Firstly, an unsteady flow field is obtained from the unsteady RANS equations through CFD (Computational Fluid Dynamics). Then, noise sources are generated using the U-FRPM method combined with acoustic analogy. Finally, the linear propagation model which is realized through BEM (Boundary Element Method) is combined with the generated sources to predict broadband noise at the listeners' position. The proposed technique is validated to compare its prediction result with the measured data.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.