After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2001.05a
/
pp.270-275
/
2001
The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been peformed, but flow characteristics that use visualization In dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes velocity vector field, turbulence kinetic energy, turbulence viscosity of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular ducts.
The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.
Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Kim, Kwan-Yeop
Journal of Korean Society of Water and Wastewater
/
v.28
no.2
/
pp.225-233
/
2014
This paper presents a Computational Fluid Dynamics(CFD) based simulation and experimental tracer test of flow pattern and turbulent energy dissipation inside a serpentine flocculation basin with continuous operation. Research focused on the evaluation of a specific flow pattern on the hydraulic behavior on the flocculation basin. From the results of CFD simulation and actual tracer test, both results were in good accordance with each other. Also, each Morill index were calculated as 1.5 from CFD simulation and 1.7 from actual tracer test, respectively. Especially, turbulence energy was dissipated relatively higher in the vicinity of inlet to the flocculation basin than other region. The differences between the CFD simulation and actual tracer test were 1.4 min in $T_{50}$, and 1.3 min in $T_p$, respectively.
The snow cornice mass on the formation zone had triggered avalanches which led to the loss of human life and property. Snow cornice is formed due to flow separation on the leeward side. Effect of lee slope is more prominent in the formation of snow cornices as compared to the windward slope. The analysis of wind flow pattern has been carried out to evaluate the performance of a jet roof. Computational Fluid Dynamics (CFD) analysis of wind flow over a 2D hill model was carried out using RNG based k-∈ turbulence models available in ANSYS Fluent. Effect of varying leeward hill slope (1:2 to 1:6) on flow separation for the given windward slope was observed and a critical slope of 1:4 was found at which the separation zone ceased to exist. The modification of wind flow over a hill due to the installation of jet roof was simulated. It was observed that jet roof had significantly modified the wind flow pattern around hill ridgeline and ultimately snow cornice formation had mitigated. The results of the wind flow pattern were validated with the wind data collected at the experimental site, Banihal Top (Jammu and Kashmir, India). The wind flow simulation over the hill and mitigation of cornice formation by the jet roof has been explained in the present paper.
Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
Nuclear Engineering and Technology
/
v.56
no.4
/
pp.1244-1249
/
2024
A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.
Direct numerical simulations are performed for a turbulent flow subjected to a sudden change in pressure gradient. The calculations are started from a fully-developed turbulent channel flow at $Re_{\tau}=180$. The pressure gradient of the channel flow is then changed abruptly. The responses of the turbulence quantities (e.g., turbulence intensities, Reynolds shear stress, and vorticity fluctuations) and the near-wall turbulence structure to the pressure gradient change are investigated. It is found that there are two different relaxations: a fast relaxation at the early stage and a slow one at the later stage. The early response of the velocity fluctuations shows an anisotropic response of the near-wall turbulence.
Computational fluid dynamics was used to optimize an A/C duct. Three dimensional flow analysis in an automotive A/C duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. Additionally, we studied the effect of location variation of 2nd branch on exit flow ratio and could find optimal location of 2nd branch. The design of an A/C duct was modeled and calculated to enhance the airflow distribution in each outlet using the STAR-CD computational fluid dynamics software. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the future, adoption of CFD to design an A/C duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.
Hydraulic efficiency was a vital component in evaluating the disinfection capability of clearwell. Current practice evaluates these system based on the tracer test only. In this paper, CFD(Computational Fluid Dynamics) was applied on the clearwell for alternating or supplementing the tracer test. The baffle factor derived from the CFD modeling closely matched the values obtained from full scale tracer testing. And, for suggesting proper numerical model in clearwell; the turbulence model, discretization scheme, convergence criteria were investigated through separate simulation runs. The model validation was conducted by comparing the simulated data with experimental data. In the turbulence model, the realizable ${\kappa}-{\varepsilon}$ model and the standard ${\kappa}-{\varepsilon}$ model were found to be more appropriate than RNG ${\kappa}-{\varepsilon}$ model. The residuals of convergence criteria should be used as not $10^{-3}$ but $10^{-4}$ or $10^{-5}$. In discretization scheme, the difference of simulated values in 1st, 2nd, 3rd upwind scheme was found to be insignificant. Moreover, the result of this study suggest that CFD modeling can be a reliable alternative to tracer testing for evaluating the hydraulic efficiency.
Kim, Jinuk;Bak, Jeonggyu;Kang, Youngseok;Cho, Leesang;Cho, Jinsoo
The KSFM Journal of Fluid Machinery
/
v.17
no.3
/
pp.46-51
/
2014
In this study, a numerical analysis methodology is studied to predict thermal and flow characteristics of C3X vane with internal cooling. Effects of turbulence models, transition models and viscous work term on temperature and pressure distributions on the vane surface are investigated. These optional terms have few effects on the pressure distributions over the vane surface. However, they have great influence on prediction of the temperature distributions on the vane surface. The combination of k-${\omega}$ based SST turbulence model, ${\gamma}$ transition model and viscous work term are better than RSM turbulence model on prediction of the surface temperature. The average temperature difference between CFD results and experimental results is calculated 2 % at the pressure side and 1 % at the suction side. Furthermore computing time of this combination is half of the RSM turbulence model. When k-${\omega}$ based SST turbulence model and ${\gamma}$ transition model with viscous work term are applied, more accurate predictions of thermal and internal flow characteristics of high pressure turbine are expected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.