• 제목/요약/키워드: turbine speed control

검색결과 368건 처리시간 0.039초

회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화 (Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain)

  • 김연희;강용철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계 (Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine)

  • 김관수;백인수;김철진;김현규;김형길
    • 한국태양에너지학회 논문집
    • /
    • 제36권6호
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터 (A Wind Turbine Simulator with Variable Torque Input)

  • 정병창;송승호;노도환;김동용
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권8호
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석 (Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System)

  • 양진식;송태원;김재훈;손정락;노승탁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF

가스터빈 발전기 속도조정율 향상을 위한 제어기 튜닝 (Controller Tuning of a Gas Turbine Generator to Improve Speed Regulation)

  • 신윤오;김종안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.725-727
    • /
    • 1998
  • It is difficult to determine the controller parameters that we can get optimum response of the controlled process variable. In this paper we investigate the effects of various elements of which a gas turbine MW control loop is consists. And we describe the result of actual adjustment on the parameters of these elements to improve the speed regulation of a gas turbine.

  • PDF

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

라이다 측정을 이용한 나셀 풍속계 보정식 제안 (Calibration Equation for Nacelle Anemometer Derived by LIDAR Measurements)

  • 김현구;안해준;양승주;박우재;김석우
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.12-16
    • /
    • 2013
  • The nacelle anemometer mounted behind the blade roots of a wind turbine measures distorted wind speed comparable with free-stream wind because of the wake effects caused dependent upon the operation of the wind turbine and the rotation of its blades. The field campaign was carried out to measure free-stream wind speed at a height identical to the height of the nacelle anemometer by deploying a ground-based remote-sensing equipment, LIDAR. It is derived that a third-order polynomial equation for correcting wind speed measured by the nacelle anemometer to undistorted free-stream wind speed incident to a wind turbine. It is anticipated that the derived correction equation enables wind speed measured by the nacelle anemometer to be used as a precise input for a wind turbine performance test and for developing an active control logic.

Experimental and Simulation Results for Sliding Mode Dynamic Wind Turbine Control using a DC Chopper

  • Riahy G.;Freere P.;Holmes D.G
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.650-655
    • /
    • 2001
  • Wind speeds can vary rapidly and wind turbines cannot easily follow these variations because of their inertia and aerodynamic characteristics. For maximum energy extraction. the turbine blades should operate at their optimum tip speed ratio, but with rapid changes in wind speed. this is usually not possible. To improve the energy extraction from turbulent wind, it is necessary to establish an effective measure of the high frequency component of the wind. and then to use this measure to optimise the operation of the turbine controller for maximum energy extraction. This paper presents an approach for combining readings from three anemometers into a composite wind speed measurement. and using this signal to control the operation of a permanent magnet generator to achieve maximum energy extraction. The method combines simulation and experimental investigations into a heuristic algorithm. and demonstrates its effectiveness with field trials.

  • PDF

소형 풍력발전시스템의 출력제어 (Power Control of Small Wind Power System)

  • 김철호;이현채;서영택;조환기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1066_1067
    • /
    • 2009
  • Wind power is one of most promising renewable energy. The output capacity of large wind turbine has been increased for off-shore application. Number of installation of small wind turbine also has been increased for the stand-alone and off-grid application of remote area and recently small wind turbine equipped with lamp on the pole is used for street lamp. Maximum wind energy must be extracted by wind turbine within rated wind speed. Power must be controlled to protect the system such as blade, generator, and power system above the rated wind speed. In this paper, small wind power system of 800W rating for battery charging is implemented and output power control by furling system is verified at wind tunnel test.

  • PDF