• 제목/요약/키워드: turbine blade

검색결과 1,271건 처리시간 0.036초

의료용 고속 에어터빈 핸드피스의 내부 유동특성에 대한 수치해석 (NUMERICAL ANALYSIS OF INTERNAL CHARACTERISTICS ON DENTAL HIGH-SPEED AIR TURBINE HANDPIECE)

  • 류경진;윤동협;백준호;이동우;김동영;장상우;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.535-542
    • /
    • 2011
  • To utilizing CFX V12.0.l, internal flow characteristics of denture high-speed air turbine hand-piece unit was identified, in order to analyze the performance of the torque values were compared. In order to find out the difference of torque by mash values, under steady condition, performed grid convergence test. It compared theoretical torque with torque through flow analysis. To describe the motion of turbine blade was used to immerged solid method. Depending on the location of the turbine blade were calculated from five case. Maximum and minimum values of turbine blades was analyzed. To analyze the performance of the torque values were compared with speed of turbine blade.

  • PDF

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

풍력-태양광 복합 가로등 구조특성 연구 (Structural Characteristics for the Hybrid Street-Lamp of a Small Wind Turbine and Photovoltaic Power System)

  • 전현준;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.566-572
    • /
    • 2013
  • In the present study, structure analysis has been performed to understand the deflection and stress distribution for a hybrid street-lamp having a vertical-axis wind turbine and a photovoltaic panel. Modal analysis is also evaluated to avoid resonance gerenerated by sychronism between a turbine and a lamppost. To analyze deflection, stress and frequency, general analysis code(ANSYS-Mechanical 13) is employed in the present work. Throughout structure analysis in the hybrid street-lamp, maximum stress is observed at the connecting position between a turbine blade and a blade supporter. Campbell diagram which is combined the natural frequency of turbine blades and blade passing frequency is presented to analyze a system resonance. It is found that the resonance of the system having a rotating turbine blade and a lamppost can avoid by the optimal selection of geometric parameters of a wind turbine.

12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II) (A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II))

  • 김창희;서현욱;윤기봉;박기성;김승태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

수직형 소형풍력터빈의 비정상 익력 평가 (Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine)

  • 이상문;김철규;전석윤;알사지드;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

수평축 풍력터빈 블레이드의 이산소음과 광역소음의 수치해석 (Numerical Study on Discrete and Broadband Noise Generated from Horizontal Axis Wind Turbine Blade)

  • 유기완;유병민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.315-318
    • /
    • 2008
  • Numerical calculation for the 1MW class horizontal axis wind turbine blade has been carried out to estimate the magnitude between discrete noise and random noise. Farassat formula 1A was adopted to get the discrete noise signal, and blade element momentum theory was used to obtain the distribution of the aerodynamic data along the blade span. Fukano's approach was also adopted to calculate the unsteady aerodynamic random noise due to the Karman vortex generation at the trailing edge of the wind turbine blade. From the noise prediction for the 1MW class horizontal axis wind turbine, the frequency band of the discrete noise lies in the infrasound region, and that of the random noise lies in the audible band region.

  • PDF

풍력터빈 블레이드 공력설계 및 성능예측 (Aerodynamic Design and Performance Prediction of Wind Turbine Blade)

  • 김철완;조태환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.677-681
    • /
    • 2011
  • 수직축 및 수평축 풍력터빈의 특성 및 공력성능예측 방법에 대해 고찰하였다. Darrieus형 수직축 풍력터빈은 블레이드에 유입되는 바람의 속도 및 받음각의 변화가 매우 심해 Dynamic Stall 현상이 발생하고 앞면에서 발생한 Wake가 후면 블레이드의 공력특성에 영향을 준다. 수평축은 BEMT를 활용하여 형상설계 및 성능예측이 가능하고 전산해석 및 풍동시험을 통해 공력성능예측이 수행되고 있다.

  • PDF

500kW급 수평축 조류발전기의 수력 최적 설계 (Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine)

  • 유기완
    • 한국태양에너지학회 논문집
    • /
    • 제29권5호
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

유전알고리즘과 CFD기법을 이용한 터빈블레이드 경사각 최적화 (Leaning Angle Optimization of the Turbine Blade using the Genetic Algorithm and CFD method)

  • 이은석;정용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.413-414
    • /
    • 2008
  • Abstract should be in English. The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulencemodeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF