• Title/Summary/Keyword: tunneling method

Search Result 387, Processing Time 0.023 seconds

Study on Auger Recombination Control using Barrier SiO2 in High-Quality Polysilicon/Tunneling oxide based Emitter Formation (고품질 polysilicon/tunneling oxide 기반의 에미터 형성 공정에서의 Auger 재결합 조절 연구)

  • Huiyeon Lee;SuBeom Hong;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2024
  • Passivating contacts are a promising technology for achieving high efficiency Si solar cells by reducing direct metal/Si contact. Among them, a polysilicon (poly-Si) based passivating contact solar cells achieve high passivation quality through a tunnel oxide (SiOx) and poly-Si. In poly-Si/SiOx based solar cells, the passivation quality depends on the amount of dopant in-diffused into the bulk-Si. Therefore, our study fabricated cells by inserting silicon oxide (SiO2) as a doping barrier before doping and analyzed the barrier effect of SiO2. In the experiments, p+ poly-Si was formed using spin on dopant (SOD) method, and samples ware fabricated by controlling formation conditions such as existence of doping barrier and poly-Si thickness. Completed samples were measured using quasi steady state photoconductance (QSSPC). Based on these results, it was confirmed that possibility of achieving high Voc by inserting a doping barrier even with thin poly-Si. In conclusion, an improvement in implied Voc of up to approximately 20 mV was achieved compared to results with thicker poly-Si results.

Theoretical study on rock excavation method by whitelight thermal stress (백열광을 이용한 무진동, 무소음 암반파쇄공법의 이론적 고찰)

  • Choi, Yong-Ki;Han, Hyun-Hee;Kim, Sung-Hwan;Kim, Hak-Joon;Arrison, Norman L.;Kong, Hoon-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.229-234
    • /
    • 2002
  • Nowadays, the blast method is mainly operated in the fields of the rock excavation accompanied by construction site in Korea. Blast method has many merits such as improvement of workability, reducement of operation period, and etc. However, blast operation also create much loss and troubles with the neighbours for the environmental pollutions such as the noise, blast vibration, fly rocks and dusts. Thus, the non-vibration and shallow vibration methods have been used but they have also another problems in the view of the economy and the efficiency in operation. In this study, we had made laboratory tests for the breaking of the various Rock types by White Light Thermal Stress. The tests shows that one unit consuming 500kilowatts of electricity, would go 90 feet a day in tunneling if the tunnel was 16 feet by 16 feet. Also, if a faster rate of tunneling could be handled, other white light units could be added.

  • PDF

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

A study on the effect of blasting vibration and the optimal blasting offset according to the depth of tunnel (터널 심도에 따른 발파 진동 영향 및 최적 발파 이격거리 연구)

  • Kong, Suk-Min;Choi, Sang-Il;Kim, Yeong-Bae;Noh, Won-Seok;Kim, Chang-Yong;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.483-494
    • /
    • 2022
  • Owing to the saturation of ground spaces in downtown areas, underground spaces are being developed increasingly. Underground spaces are utilized for transportation, water supply and sewerage, communication zones, electric power zones, and various cultural complexes. In Korea, for excavating underground spaces, blasting methods using gunpowder such as the New Austrian Tunneling Method (NATM) are mainly used. However, the blasting method causes vibration and noise during tunnel excavation, generating many complaints from residents in the vicinity of the excavation site. To address this problem, various methods have been developed, and recently, vibration and noise have been reduced using deep excavation. This study predicts blast vibration changes according to the depth, under the same blasting and tunnel conditions, using numerical analysis based on the blast vibration measurement data of the GTX-A route, the tunnel cross-section drawings, and ground investigation reports. Furthermore, the necessary separation distance from densely populated areas such as residential areas is suggested by analyzing the trend of decreasing blast vibration according to the distance from ground surface directly above the blasting location.

A Study on the J-Resistance Characteristics and Material Tearing Modulus of SG365 steel (SG365강의 파괴저항특성과 찢어짐계수에 관한 연구)

  • 임만배;윤한기
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.75-80
    • /
    • 2001
  • The elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the material tearing modulus and characterizes the crack tip field under the plane stress and strain. SG-365 steel is observed that J-R curve and Tmat value decrease as 0%, 20%, 30%, and 40%. The 40% side grooved specimen is very useful in estimation of the $J_IC$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides. it improves the accuracy of toughness values, decreases the scattering the them and tunneling and shear lip by the side groove. Applicability of tearing modulus($T_J$ proposed by paris et al as instability panameter for this material is investigated.

  • PDF

Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process (UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법)

  • Kang, Jaewoon;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

A New Programming Method of Scaled SONOS Flash Memory Ensuring 1$\times$10$^{6}$ Program/Erase Cycles and Beyond (1x10$^{6}$ 회 이상의 프로그램/소거 반복을 보장하는 Scaled SONOS 플래시메모리의 새로운 프로그래밍 방법)

  • 김병철;안호명;이상배;한태현;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.54-57
    • /
    • 2002
  • In this study, a new programming method, to minimize the generation of Si-SiO$_2$ interface traps of scaled SONOS flash memory as a function of number of program/erase cycles has been proposed. In the proposed programming method, power supply voltage is applied to the gate, forward biased program voltage is applied to the source and the drain, while the substrate is left open, so that the program is achieved by Modified Fowler-Nordheim (MFN) tunneling of electron through the tunnel oxide over source and drain region. For the channel erase, erase voltage is applied to the gate, power supply voltage is applied to the substrate, and the source and drain are open. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ prograss/erase cycles can be realized by the proposed programming method. The asymmetric mode in which the program voltage is higher than the erase voltage, is more efficient than symmetric mode in order to minimize the degradation characteristics of scaled SONOS devices because electrical stress applied to the Si-SiO$_2$ interface is reduced by short programming time.

  • PDF

A Method of efficient connection setting for Mobile IP with high mobility (이동성이 잦은 Mobile IP를 위한 효율적인 연결 설정 기법)

  • Rho Kyung-Taeg;Kim Hye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.167-172
    • /
    • 2004
  • Although Mobile IP proposed in IETF is effective. it has inefficiency in case mobile hosts communicate with each others while they are roaming frequently in a specific area. It occurs lots of latency because mobile hosts must be registered and establish an secure path under the internet emvironments and transmitting data on the path. Additionally this inefficiency is more aggravated in case mobile hosts has high mobility. Thus this paper propose a method using Anchor foreign agent by Anchor chain method which combine an pointer forwarding and a cache method plus a border router as a way to complement the above problem which exists in an mobility management in a specific area.

  • PDF

A Study on Efficient Design Technique of RPUM Steel Pipes (RPUM 강관의 효율적인 설계기법에 관한 연구)

  • Kim, Jung-Su;Park, Tae-Soon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1354-1363
    • /
    • 2006
  • Until now, NATM(New Austrian Tunneling Method) has been increasingly developed based on concept of making use of ground as support. Also, NATM in its essence is a method of risk based on monitoring behaviour of tunnel. This Monitoring is irreplaceable for the quality construction of tunnel, and safety of tunnel itself. Pre-reinforcement ahead of a tunnel face using long steel pipes in NATM, known as the RPUM(Reinforced Protective Umbrella Method), is the auxiliary method to sustain the stability of a tunnel face and reduce the ground settlements. Since design of RPUM has been dependent on the empirical design, it is necessary to develop the improved design methods. In this study, to understand behaviour of steel pipes, it is monitored displacement of tunnel crown, axial force of rock bolt, displacement and axial stress of steel pipes. Also, in order to clarify the mechanical behaviour and RPUM effects, 3-Dimensional numerical analysis is performed that various cases of different parameter combinations including original length and repeated length of steel pipes, installation width and angle, repeated length of steel. In the results of comparison monitoring with analysis, it is suggested more economical and efficient design technique than empirical design methods.

  • PDF

Application of Artificial Neural Network method for deformation analysis of shallow NATM tunnel due to excavation

  • Lee, Jae-Ho;Akutagawa, Shnichi;Moon, Hong-Duk;Han, Heui-Soo;Yoo, Ji-Hyeung;Kim, Kwang-Yeun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.43-51
    • /
    • 2008
  • Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). For rational management of tunnels from planning to construction and maintenance stages, prediction, control and monitoring of displacements of and around the tunnel have to be performed with high accuracy. Computational method tools, such as finite element method, have been and are indispensable tool for tunnel engineers for many years. It is, however, a commonly acknowledged fact that determination of input parameters, especially material properties exhibiting nonlinear stress-strain relationship, is not an easy task even for an experienced engineer. Use and application of the acquired tunnel information is important for prediction accuracy and improvement of tunnel behavior on construction. Artificial Neural Network (ANN) model is a form of artificial intelligence that attempts to mimic behavior of human brain and nervous system. The main objective of this paper is to perform the deformation analysis in NATM tunnel by means of numerical simulation and artificial neural network (ANN) with field database. Developed ANN model can achieve a high level of prediction accuracy.

  • PDF