• Title/Summary/Keyword: tunnel-face

Search Result 425, Processing Time 0.023 seconds

Behavior of Tunnel Face Reinforced with Horizontal Pipes (수평보강재로 보강된 터널 막장의 거동)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.185-192
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A three-dimensional finite element model was adopted in this study to capture the three-dimensional nature of tunnel face behavior under various boundary conditions. A parametric study was peformed on a wide range of boundary conditions with emphasis on the effect of reinforcing layouts on the deformation behavior of tunnel face. The results of analysis such as tunnel face deformation behavior under various conditions were thoroughly analyzed, and a database for the behavior of tunnel face under different reinforcing conditions was established for future development of a semi-empirical design/analysis method for the tunnel face reinforcing technique. The results indicated that there exits an optimum reinforcing layout for a given tunnel condition, which must be selected with due consideration of tunnel geometry and ground condition.

  • PDF

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Measurement of Tunnel Arch Settlements Ahead of and Behind the Tunnel Face Using a Horizontal Inclinometer and Settlement Pins (수평경사계와 천단침하계에 의한 터널막장 전후방의 천단침하 계측)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.120-129
    • /
    • 2013
  • It is important to measure the displacement behind and ahead of a tunnel face during construction for evaluating mechanical stability by comparing it to a displacement criteria set by tunnel designers. The 30 m long horizontal inclinometer was installed frontward from the tunnel face and the displacement occurred ahead of a tunnel face during excavation was measured by using it. Tunnel arch settlements behind tunnel face were surveyed using a settlement pins on the arch. So total settlement and longitudinal displacement curve were obtained combining settlement measured by both the horizontal inclinometer ahead of tunnel face and the settlement pins behind the tunnel face.

Study of Tunnel Face Mapping Using Tunnel Mapper (Tunnel Mapper를 이용한 Tunnel 막장면 조사에 관한 연구)

  • Kwak, No-Kyung;Cho, Sung-Jin;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.200-211
    • /
    • 2010
  • Tunnel Mapper, which is tunnel face survey system was used to conduct Face Mapping on the face of the tunnel that is under construction. Then, accuracy and utility value on the forecast of discontinuity were verified to verify the field application in order to present the measures for the use of the system for conducting research on the discontinuity. As result of the directivity verification following discontinuity‘s project, forecasted measurement and actually researched measurement error for the Dip direction and Dip angle was less than ${\pm}10$. Accuracy was 82.6% for Dip direction and 90.7% for Dip angle, which are high. Accordingly, face research discontinuity forecasting system's reliability level towards directivity is high. Tunnel Mapper, a tunnel face survey system can be leveraged to replace face's visual survey and to obtain objective information, enabling execution of the survey system that can automate face survey going beyond time and space related limitations.

  • PDF

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

A study on stresses and displacements of the ground according to the closure ratio of tunnel face during tunnel excavation (터널 막장폐합비에 따른 지반 응력 및 침하량에 대한 연구)

  • Kim, Sang-Hwan;Min, Byeong-Heon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.369-378
    • /
    • 2010
  • This paper presents a new approach of closing the tunnel face with sprayed concrete to reduce the stress at the tunnel face and displacement occurring at the ground surface during tunnel excavation. In order to carry out this research, the experimental and numerical studies are performed. In the experimental study, the model tests are carried out according to the closure ratio of tunnel face, tunnel depth and tunnel excavation length. The model test results are analyzed and interpreted by numerical calculation in order to verify both results obtained from experimental and numerical studies. It is clearly found that the tunnel face stability is decreased in decreasing the closure ratio of tunnel face. The results also show that the tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements (수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face (터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

A Study on the Closure Ratio for Tunnel Face Stabilization during Tunnel Excavation in Sand Soil (사질토지반에서 터널굴착시 막장안정을 위한 폐합비에 관한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Lim, Chae-Ho;Lee, In-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.79-89
    • /
    • 2012
  • This paper presents experimental and numerical studies on the closure ratio of tunnel face to reduce pressure and displacement occurring at tunnel face during tunnel excavation. In experimental study, model tests are carried out according to the closure ratio of tunnel face and tunnel depth. Model test results are analyzed and interpreted by numerical calculation in order to verify results obtained from experimental and numerical studies. It is clearly found that tunnel face stability increases with the increase of the closure ratio of tunnel face. The results also show that tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.