• Title/Summary/Keyword: tunnel ventilation

Search Result 352, Processing Time 0.023 seconds

A Cascade Control Algorithm for the CO Level Control of a Long Road Tunnel (터널 일산화탄소 농도 제어를 위한 직렬 제어 알고리즘)

  • Han Do Young;Yoon Jin Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • For a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution level below the required level. To control the tunnel pollution level, a closed loop control algorithm may be used. The cascade control algorithm, which composed of a jet fan control algorithm and an air velocity setpoint algorithm, was developed to regulate the CO level in a tunnel. The verification of control algorithms was carried out by dynamic models developed from real tunnel data sets. The simulation results showed that control algorithms developed for this study were effective to control the tunnel ventilation system.

Design Factors for the Ventilation System of a Networked Double-deck Tunnel (네트워크형 복층 터널 환기 시스템 설계 인자)

  • Park, Sang Hoon;Lee, Seung Jun;Park, Yo Han;Kim, Se Min;Roh, Jang Hoon;Yoo, Yong Ho;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • For effective utilization of downtown area, many studies about underground have been performed around the world, and double-deck tunnel have being operated in USA, Europe and China, etc. (A86 East Duplex in France, M30 tunnel project in Spain, SR-99 in seattle, USA, Yangtze river tunnel in China) In Korea, the research about network type double-deck tunnel in deep underground space is in progress to solve the traffic jam and secure the ground space. In this study, a number of factors required for double-deck tunnel in deep underground are analyzed through the existing ventilation design outline and unique ventilation design factors for network type double-deck tunnel are established by reviewing design cases of overseas double-deck tunnel.

A Tunnel Ventilation Control Algorithm by Using CO Density Prediction Algorithm (일산화탄소 농도 예측 기능을 사용한 터널 환기 제어 알고리즘)

  • Han Doyoung;Yoon Jinwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1035-1043
    • /
    • 2004
  • For a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution level below the required level. To control the tunnel pollution level, a closed loop control algorithm may be used. The feedforward prediction algorithm and the cascade control algorithm were developed to regulate the CO level in a tunnel. The feedforward prediction algorithm composed of the traffic estimation algorithm and the CO density prediction algorithm, and the cascade control algorithm composed of the jet fan control algorithm and the air velocity setpoint algorithm. The verification of control algorithms was carried out by dynamic models developed from the actual tunnel data. The simulation results showed that control algorithms developed for this study were effective for the control of the tunnel ventilation system.

Case Study of the Longest Roadway Tunnel in Korea, Baehuryeong Tunnel (국내 최장대 양방향 도로터널 설계사례-배후령터널)

  • Lee Seon-Bok;Je Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.432-440
    • /
    • 2005
  • Baehuryeong tunnel connects Chuncheon with Hwacheon in Kangwon, Korea, This tunnel is a single tunnel with 5,057 m long and two bidirectional lanes which will be extended into low lanes in the future. The estimated construction period of Baehuryeong tunnel is approximately 55 months. This tunnel will become the longest bidirectional roadway tunnel in Korea. Compared to a twin tunnel, a bidirectional single tunnel has two major disadvantages with regard to the ventilation system and ease of escape during fire. For these reasons, a service tunnel and the transverse ventilation system are planned first time in Korea. In case of fire, the tunnel ventilation design aims to maintain a smoke free layer for passenger evacuation. The geology of Baehuryeong tunnel site is mainly composed of gneiss and granite. Baehuryeong fault is a mainly large scale fault which stands vertical and parallels with tunnel direction. The influenced zone of this fault is within 70 m. Baehuryeong tunnel was designed that it was separated with the distance of more than 100 m from Baehuryeong fault for its safety.

A study of Heat & Smoke Extraction Effects by the Various Operation of funnel Fan Shaft Ventilation (터널팬 샤프트 환기 방식에 따른 열 및 연기배출효과에 관한 연구)

  • Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2004
  • Today's popular ventilation systems include the combined jet fans and electrostatic precipitation systems or the combined jet fans and vertical shaft system. Tunnels with these two ventilation systems applied have been designed and opened, more and more interest has been put in maintenance of a tunnel after opening. Therefore. it is to become more important to come up with the optimal operation mode and the method for the evaluation of ventilation system. In this study, to evaluate a tunnel ventilation and its economy, a dynamic simulation program was developed which can simulate the unsteady-state tunnel air velocity and concentration of pollutants according to the traffic flow variations and operation condition of a ventilation system. We clarified the effectiveness usage on tunnel ventilation by using it and also we could found the most economical ventilation operation mode by application in real exit tunnel. We obtained that combination of fan system and electrostatic precipitation system was more economical than jet fan priority operation mode.

Investigation of amount of the Air Flow through a Natural Ventilator in the Subway System (지하철 자연환기구 공기 이동량 조사)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Kim, Shin-Do;Lee, Kyoung-Bin;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1480-1486
    • /
    • 2011
  • After installation of platform screen door (PSD) in subway stations, particulate matters (PMs), which are originally ventilated through the platform, are accumulated inside the tunnel of the subway system. It deteriorates an air quality inside the tunnel. To ventilate the accumulated PMs inside the tunnel, the natural ventilator which are located inside the tunnel (namely, tunnel ventilation system) are used as only one circulation system. In addition, the installation of PSD can affect to the aerodynamic variations inside the tunnel, since the PSD system was not considered factor when the tunnel ventilation system was designed. However, the researches about the tunnel ventilation system have not been adequate. Therefore, this study is carried out with two objectives: 1) to measure the velocity of air current by the train-induced wind, when the train passes through the tunnel, and 2) to investigate the typical patterns of air current by quantitatively evaluating the characteristics of inflow/outflow of air current which passes through the natural ventilation system. This study can suggest the basic standard to newly design the tunnel of the subway system as well as the ventilation system.

  • PDF

Study on Discharge Electrode Design applied for Road Tunnel (터널용 전기집진시스템 개발을 위한 방전극 설계)

  • Kim, Jong-Ryul;Weon, Jong-Oung;Jang, Chun-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1238-1243
    • /
    • 2009
  • As Social Overhead Capital(SOC) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, it is needed to introduce a compulsory ventilation system as well as natural ventilation mechanism. The former, that is, a special compulsory ventilation facility is very useful and helpful to prevent a tunnel of being contaminated by traffic in most case. In the case of obtaining clearer and longer driving view, the ventilation systems have to be considered in order to remove floating contaminants or exhaust gas from engines. In this paper, discharge electrode design technology will be discussed.

  • PDF

The study of ventilation system during fire in road tunnel with bi-directional or congested unidirectional traffic (교통정체가 심한 도로터널에 대한 화재시 제연방식에 관한 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun;Nam, Chang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.474-479
    • /
    • 2008
  • The purpose of this paper is to estimate the fire safety in tunnels with bi-directional and/or congested unidirectional traffic where there may be people on both sides of the fire. Therefore, the spread and movement of smoke are simulated by Fire Dynamic Simulator code under different ventilation systems, longitudinal, semi-transverse, large port exhaust system. And as quantitative risk index, FED (Fractional Effective Dose) for each ventilation system are calculated and compared by existed code developed previous research.

  • PDF

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

A NUMERICAL ANALYSIS OF TRAIN-WIND IN THE SUBWAY TUNNEL FOR THE IMPROVEMENT OF THE OF UNDERGROUND SPACE AIR QUALITY (지하공간의 공기 질 개선을 위한 지하철 터널 내 열차풍의 수치 해석적 연구)

  • Lee, J.H.;Juraeva, M.;Jeong, S.H.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.523-528
    • /
    • 2011
  • Subway becomes more and more main transportation in major cities. Air pollution in the subway platforms is decreased; however, dust flow inside subway tunnel and train is increased by installing Platform Screen Door. Airflow inside subway tunnel is observed using computational method in this study The airflow characteristics around ventilation shafts and inside the tunnel is studied following the train movement, while the train moves from existing Miasamgeori station to Gireum station ANSYS CFX V12.0.l and ICEM CFD V12.0.l are used to compute the airflow inside the subway tunnel.

  • PDF