• 제목/요약/키워드: tunnel ventilation

검색결과 352건 처리시간 0.025초

젯트팬 종류식 터널의 퍼지응용 제어로직에 관한 연구 (The Study of Jet Fan Control Logic for Longitudinal Ventilation in Road Tunnel)

  • 유지오;남창호;신현준
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.763-770
    • /
    • 2000
  • In tunnel ventilation, the Purpose of ventilation control is to keep the required pollution level with minimum consumption of energy But tunnel ventilation has large disturbances caused by discharge of pollutants, traffic forces especially strong for longitudinal ventilation. Hence in this paper, the tunnel ventilation control logic applying fuzzy control theories is proposed and the simulation program of tunnel ventilation control is developed. The characteristics of longitudinal ventilation with jet fans are estimated and the effect of the proposed tunnel ventilation control is verified by the simulation program.

  • PDF

지하 전력구 터널의 환기시스템 적용에 관한 연구 (II) (A Study for Application Ventilation System of Underground cable Tunnel (II))

  • 김경열;오기대;김대홍;김종환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.778-783
    • /
    • 2008
  • In this paper, numerical method was calculated on evaluation of underground ventilation system to keep servicing a fresh air. The tunnel length for simulation is 18.2 km with various located seven ventilation shaft. Generally, owing to thermal generation in cable tunnel under about 50 m depths, cable tunnel ventilation system is more important than that of other tunnels. So, we conducted that the effects of ventilation systems was simulated depending on the difference of electrical power tunnel length, the number of shaft tunnel, forced ventilation and duct was or not. Test results show that the main conditions in order to enhance the underground cable tunnel are that ventilation systems have to be designed with forced ventilation and with duct.

  • PDF

도로터널 환기시스템 개발연구 (Development of Vehicle Tunnel Ventilation System)

  • 이창우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

교통환기력에 의한 터널내 환기량 추정에 관한 연구 (Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel)

  • 김종호;이상칠;도연지;김신도
    • 한국대기환경학회지
    • /
    • 제11권3호
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

도로터널용 전기집진시스템 개발 (Development of Road Tunnel Ventilation System with Electrostatic Precipitator)

  • 김종률;원종웅
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석 (NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN)

  • 김정엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF

제트홴의 이격거리에 따른 터널내 환기특성에 관한 수치적 연구 (Effects of the Distance between Jet Fans on the Ventilation Performance in a Road Tunnel)

  • 김정엽
    • 한국유체기계학회 논문집
    • /
    • 제14권4호
    • /
    • pp.25-30
    • /
    • 2011
  • The jet fan is generally used to add thrust in the longitudinal ventilation system of road tunnel and the geometric conditions of jet fan such as the distance from tunnel wall have an effect on the performance of ventilation system. Numerical analyses on the flow in tunnel caused by operation of jet fan are presented to study the ventilation characteristics in tunnel. While the distance between jet fans in parallel installed in tunnel is changed 0.5 L/D to 3.0 L/D, the flowrate and mean velocity through tunnel are calculated for each cases. As the distance between jet fans increases, the flowrate through tunnel increases asymptotically and the momentum of tunnel flow is alike.

도로터널의 환기방식에 따른 라이닝 콘크리트의 중성화 사례 연구 (Case Study of Carbonation on Lining Concrete in Vehicular Tunnel as Ventilation System)

  • 추진호;맹두영;황인백;노은철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.417-422
    • /
    • 2005
  • The appropriate ventilation system in vehicular tunnel should be the most economical solution with regard to both construction and maintenance. The damages on tunnel lining was affected by formula of ventilation system in long vehicular tunnel. In this study, carbonation, one of main experimental items in precision safety diagnosis, was analyzed by contouring damage area with ventilation system. Considerations of carbonation were also given to the design and maintenance which manage the long-term safety in tunnel.

  • PDF

도로터널 환기관련 연구동향 (Worldwide Trends in the Research Topics for the Vehicle Tunnel Ventilation)

  • 이창우
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.152-157
    • /
    • 2002
  • 협소한 국토의 효율적 개발을 위하여 필수적인 장대터널의 확충은 사회, 경제, 환경, 기술적 환경의 변화에 따라 최적 설계가 점차 어려워지고 있다. 특히 관련 기초분야 연구가 극히 미흡한 국내 사정을 감안할 경우, 장대터널 설계 및 운영에 필요한 요소기술의 개발은 시급한 과제가 아닐 수 없다. 본 논문에서는 터널 환기에 관련된 유일한 국제 심포지움인 International Symposium on Aerodynamic and Ventilation of vehicle Tunnels에 1990년대 이후 발표된 연구분야 분석을 통하여 국내 연구가 반드시 필요한 과제의 제시를 목적으로 하였다.

일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험 (The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster)

  • 유영일;이희근
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF