• Title/Summary/Keyword: tunnel stiffness

Search Result 220, Processing Time 0.028 seconds

Anisotropic Shear Strength of Artificially Fractured Rock Joints Under Low Normal Stress (낮은 수직응력 하에서 인공 절리면의 전단 이방성에 관한 연구)

  • 곽정열;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.169-179
    • /
    • 2003
  • Anisotropic shear strength of rock joints is studied based on the artificially fractured specimens using experimental and analytical methods. Series of direct shear tests are performed to obtain the strength, stiffness and friction angle of joints under various low normal stresses and shearing directions. The results of shear strength and stiffness show anisotropic value according to shearing direction under low normal stress specially less than 2.45 MPa. But, the effect of joint roughness on strength decreases with increasing normal stress. To estimate more effectively the peak shear strength under low normal stress, the modified Barton's equation is suggested.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

A Numerical Study on the NATM Tunnel Reinforcement using Centrifuge Model Experimental value (실험값을 이용한 NATM 터널의 보강효과에 관한 수치 해석적 연구)

  • Huh, Kyung-Han;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.13-18
    • /
    • 2004
  • In this study, in the first place, parameters primarily influencing displacement and stress were constructed by using the Finite Difference Method; then using those parameters, the result of crown displacement and convergence among the existing, experimental values of a centrifuge model were compared with the result of numerical analysis; and then considering the stress and time effect of lining installation, parameters according to the difference of stiffness were studied. In the result of this study, it found out that rough, ground reinforcement effect manifests itself when reinforcement propert of the grouting of the big scale steel pipe through 3-D analysis is E= 4,000tf/m2 which of the stiffness of the original ground.

Experiments on Interfacial Properties Between Ground and Shotcrete Lining (지반과 숏크리트 라이닝의 인터페이스 특성에 관한 실험적 연구)

  • Chang, Soo-Ho;Lee, Seok-Won;Bae, Gyu-Jin;Choi, Soon-Wook;Park, Hae-Geun;Kim, Jae-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.407-414
    • /
    • 2004
  • Interfacial properties between rock mass and shotcrete play a significant role in the transmission of loads from the ground to shotcrete. These properties have a major effect on the behaviours of rock mass and shotcrete. They, however, have merely been assumed in most of numerical analyses, and little care has been taken in identifying them. This paper aimed to identify interfacial properties including cohesion, tension, friction angle, shear stiffness, and normal stiffness, through direct shear tests as well as interface normal compression tests for shotcrete/rock cores obtained from a tunnel sidewall. Mechanical properties such as compression strength and elastic modulus were also measured to compare them with the time-dependent variation of interfacial properties. Based on experiments, interfacial properties between rock and shotcrete showed a significant time-dependent variation similar to those of its mechanical properties. In addition, the time-dependent behaviours of interfacial properties can be well regressed through exponential and logarithmic functions of time.

  • PDF

Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear (직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구)

  • 김태혁;이상돈;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

Wind-induced coupled translational-torsional motion of tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-57
    • /
    • 1998
  • A three-degree-of-freedom base hinged assembly (BHA) for aeroelastic model tests of tall building was developed. The integral parts of a BHA, which consists of two perpendicular plane frames and a flexural pivot, enable this modeling technique to independently simulate building translational and torsional degree-of-freedom. A program of wind tunnel aeroelastic model tests of the CAARC standard tall building was conducted with emphasis on the effect of (a) torsional motion, (b) cross-wind/torsional frequency ratio and (c) the presence of an eccentricity between center of mass and center of stiffness on wind-induced response characteristics. The experimental results highlight the significant effect of coupled translational-torsional motion and the effect of eccentricity between center of mass and center of stiffness on the resultant rms acceleration responses in both along-wind and cross-wind directions especially at operating reduced wind velocities close to a critical value of 10. In addition, it was sound that the vortex shedding process remains the main excitation mechanism in cross-wind direction even in case of tall buildings with coupled translational-torsional motion and with eccentricity.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

A Study on Experimental Test of a Small Scale Hingeless Rotor (축소형 무힌지 로터 시험에 관한 연구)

  • Kim, Joune-Ho;Song, Keun-Woong;Joo, Gene;Suk, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1599-1606
    • /
    • 2011
  • It is possible to study the load characteristics of full-scale hingeless rotor with the changing of physical smallscaled configurations such as rectangular and paddle blades, and metal and composite hubs. In this study, a static test, and a ground and wind-tunnel test were carried out using small-scale rotor models. The static test was carried out to confirm structural stiffness, characteristics of inertia, natural frequency, and damping ratio of rotors, and the ground and wind-tunnel test was carried out to confirm the stability and aerodynamic characteristics under hovering and forward flight conditions. According to the test results, the vertical load in the case of a combination of a small composite hub with paddle blades was higher than that in the case of a metal hub with paddle blades at same condition. Further, it was confirmed that the restraint of the combination of composite hub can be more flexible than the metal hub for the motion of paddle blades.

Study on rock reinforcement process and the effect of produced strength right after rockbolt installation (록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구)

  • Itoh, Jhun;Park, Hae-Geun;Kim, Dong-Wan;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2003
  • For the huge section of tunnel, it is highly required to observe the role of each rock support and their effect of rock reinforcement in order to investigate more reasonable rock support structure. Especially for unstable tunnel situation with no shotcrete strength right after an excavation, sufficient investigation is needed for rock support structure. In this paper, we clarify the relations of compressive strength and material age, cohesion strength and material age, and cohesion stiffness and material age of grout with time-dependence through tests and numerical analysis simulation with trial rock mass considering hardening of bolt grouting material. By means of this process, effect of rock reinforcement for rockbolt is investigated right after an excavation and modelling and physical constants of young aged rockbolts are obtained. Additionally, the effect of rock reinforcement with hydraulic tensile friction bolt is examined right after an excavation, which grout effect is no need to be waited.

  • PDF