• Title/Summary/Keyword: tunnel safety analysis

Search Result 541, Processing Time 0.024 seconds

The effect of curvature at the bottom of a soft ground tunnel by numerical analysis (수치해석에 의한 연약지반 터널의 바닥부 곡률의 영향 분석)

  • You, Kwangho;Kim, Kangsan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.107-118
    • /
    • 2021
  • Due to the acceleration of road construction, the number and extension of tunnels are increasing every year. A lot of research has been done on the collapse of tunnels, but research on the invert heaving is insufficient. Therefore, in this study, a sensitivity analysis was performed using a geotechnical general-purpose program to analyze the effect of the invert curvature of a tunnel excavated on the soft ground. As a result, it was quantitatively confirmed that the stability of a tunnel was increased as the curvature of the tunnel invert was increased so that the safety factor was calculated to be large regardless of the ground conditions and the thickness of the support. In addition, it was confirmed that the stability of the tunnel was increased by reducing the convergence of the tunnel and the maximum bending stress supported by shotcrete. Therefore, when a tunnel is excavated on soft ground, it is believed that applying a curvature to the invert will increase the stability of the tunnel.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method (준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가)

  • Son, Sung-Wan;Ru, Kuk-Hyun;Chun, Jong-Kun;Nam, Young-Sik;Kim, Dong-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF

Analysis and development of measurement systems for tunnels and slopes under a high velocity (고속주행을 고려한 터널 및 사면의 계측시스템 분석 및 개선 방안 연구)

  • Chung, Jae-Hoon;Park, Yoon-Je;Lee, Rae-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1376-1381
    • /
    • 2010
  • In this study, we dealt with an analysis and development of measurement systems for tunnel and slope structures under a high velocity. Deterioration of tunnel and slope structures becomes a critical issue in regard to both safety and economic concerns. Deterioration itself is inevitable, but condition assessment technology and nondestructive evaluation techniques could provide solutions to ensure public safety by means of detecting damage before serious and expensive degradation consequences occur. We reviewed the existing monitoring and maintenance systems of slopes and tunnels and more advanced directions, especially for highways under high-speed vehicles.

  • PDF

Application of Probabilistic Technique for the Development of Fire Accident Scenarios in Railway Tunnel (확률론적 기법을 활용한 철도터널의 화재사고 시나리오의 구성)

  • 곽상록;홍선호;왕종배;조연옥
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.302-306
    • /
    • 2004
  • Many long railway tunnels without emergency evacuation system or ventilation system are under construction or in-use in Korea. In the case of tunnel-fire, many fatalities are occur in current condition. Current safety level is estimated in this study, for the efficient investment on safety. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, accident scenarios and survival ratio under tunnel fire accident are determined for various conditions.

Limit analysis of a shallow subway tunnel with staged construction

  • Yu, Shengbing
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2018
  • This paper presents a limit analysis of the series of construction stages of shallow tunneling method by investigating their respective safety factors and failure mechanisms. A case study for one particular cross-section of Beijing Subway Line 7 is undertaken, with a focus on the effects of multiple soil layers and construction sequencing of dual tunnels. Results show that using the step-excavation technique can render a higher safety factor for the excavation of a tunnel compared to the entire cross-section being excavated all at once. The failure mechanisms for each different construction stage are discussed and corresponding key locations are suggested to monitor the safety during tunneling. Simultaneous excavation of dual tunnels in the same cross-section should be expressly avoided considering their potential negative interactions. The normal and shear forces as well as bending moment of the primary lining and locking anchor pipe are found to reach their maximum value at Stage 6, before closure of the primary lining. Designing these struts should consider the effects of different construction stages of shallow tunneling method.

A Back Analysis Study for the Assessment of Tunnel Lining Safety Using Numerical Analysis Model (수치해석 기법을 이용한 터널 라이닝 안전성 평가에 관한 역해석 연구)

  • 박치현;김창용;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.296-305
    • /
    • 1999
  • In ordinary back analysis it if hardly possible to obtain the mechanical properties of tunnel lining by using commonly measured displacements of tunnel lining, because only a few displacements could be measured at the site. Therefore, it is necessary to develop a new method which can evaluate the state of stresses of tunnel by using measured data. In this study, in order to assess tunnel lining stability by estimating its stresses with a few measured displacements, a formulation of back analysis method was proposed. The accuracy of results were investigated through the parametric study for several types of measurement model of two dimensional elastic lining. This new back analysis method to assess tunnel lining stresses and strains with a few numbers of measured displacements showed high accuracy and good applicability when compared to the results of numerical experiments by FEM. The method has been tested on subway tunnel and its applicability has been confirmed by comparing field and analytical data. It is verified that the stress on the tunnel lining can be obtained by only more than 3 point of input displacements without any condition of external loads.

  • PDF

A Safety Evaluation of Cable Tunnel Exposed to Fire (화재피해 통신구의 안전진단)

  • 김지상;김형우;김효환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.221-226
    • /
    • 1994
  • A safety evaluation of cable tunnel, which is a concrete box structure with telecommunication facilities in it, exposed to fire is given. The immediate field observation was performed to find out any sign of sudden structural failure. In some region, where the fire intensity was heavy, the spalling of concrete cover in upper slab occurred. Next, more careful investigation was done with proper non-desturctive testing methods and structural analysis taking into account the changes in material properties due to fire. It seems that there is no severe damage on concrete, reinforcements and over all structural system.

  • PDF