DOI QR코드

DOI QR Code

Limit analysis of a shallow subway tunnel with staged construction

  • Yu, Shengbing (School of Civil Engineering and Water Conservancy, Ningxia University)
  • Received : 2017.09.29
  • Accepted : 2018.01.27
  • Published : 2018.08.10

Abstract

This paper presents a limit analysis of the series of construction stages of shallow tunneling method by investigating their respective safety factors and failure mechanisms. A case study for one particular cross-section of Beijing Subway Line 7 is undertaken, with a focus on the effects of multiple soil layers and construction sequencing of dual tunnels. Results show that using the step-excavation technique can render a higher safety factor for the excavation of a tunnel compared to the entire cross-section being excavated all at once. The failure mechanisms for each different construction stage are discussed and corresponding key locations are suggested to monitor the safety during tunneling. Simultaneous excavation of dual tunnels in the same cross-section should be expressly avoided considering their potential negative interactions. The normal and shear forces as well as bending moment of the primary lining and locking anchor pipe are found to reach their maximum value at Stage 6, before closure of the primary lining. Designing these struts should consider the effects of different construction stages of shallow tunneling method.

Keywords

References

  1. Assadi, A. and Sloan, S.W. (1992), "Undrained stability of shallow square tunnel", J. Geotech. Eng., 117(8), 1152-1173. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:8(1152)
  2. Augarde, C.E., Lyamin, A.V. and Sloan, S.W. (2003), "Stability of an undrained plane strain heading revisited", Comput. Geotech., 30(5), 419-430. https://doi.org/10.1016/S0266-352X(03)00009-0
  3. Davis, E.H., Mair, R.J., Seneviratine, H.N. and Gunn, M.J. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397
  4. Dormieux, L. and Leca, E. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40(4), 581-606. https://doi.org/10.1680/geot.1990.40.4.581
  5. Drucker, D.C., Prager, W. and Greenberg, H.J. (1952), "Extend limit design theorems for continuous media", Quart. Appl. Math., 9(4), 381-389. https://doi.org/10.1090/qam/45573
  6. Fang, Q., Zhang, D., Li, Q. and Wong, L.N.Y. (2015), "Effects of twin tunnels construction beneath existing shield-driven twin tunnels", Tunn. Undergr. Sp. Technol., 45, 128-137. https://doi.org/10.1016/j.tust.2014.10.001
  7. Fang, Q., Zhang, D. and Wong, L.N.Y. (2011), "Environmental risk management for a cross interchange subway station construction in China", Tunn. Undergr. Sp. Technol., 26(6), 750-763. https://doi.org/10.1016/j.tust.2011.05.003
  8. Fang, Q., Zhang, D., and Wong, L.N.Y. (2012), "Shallow tunnelling method (stm) for subway station construction in soft ground", Tunn. Undergr. Sp. Technol., 29, 10-30. https://doi.org/10.1016/j.tust.2011.12.007
  9. Gvozdev, A.A. (1960), "The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformation", J. Mech. Sci., 1(4), 322-335. https://doi.org/10.1016/0020-7403(60)90051-5
  10. Han, K., Zhang, C., Li, W. and Guo, C. (2016a), "Face stability analysis of shield tunnels in homogeneous soil overlaid by multilayered cohesive-frictional soils", Math. Prob. Eng.
  11. Han, K., Zhang, C. and Zhang, D. (2016b), "Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesive-frictional soils", Comput. Geotech., 79, 1-9. https://doi.org/10.1016/j.compgeo.2016.05.018
  12. Hou, Y., Fang, Q., Zhang, D., and Wong, L.N.Y. (2015), "Excavation failure due to pipeline damage during shallow tunnelling in soft ground", Tunn. Undergr. Sp. Technol., 46, 76-84. https://doi.org/10.1016/j.tust.2014.11.004
  13. Huang, M. and Song, C. (2013), "Upper-bound stability analysis of a plane strain heading in non-homogeneous clay", Tunn. Undergr. Sp. Technol., 38, 213-223. https://doi.org/10.1016/j.tust.2013.07.012
  14. Ibrahim, E., Soubra, A.H., Mollon, G., Raphael, W., Dias, D. and Reda, A. (2015), "Three-dimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium", Tunn. Undergr. Sp. Technol., 49, 18-34. https://doi.org/10.1016/j.tust.2015.04.001
  15. Krabbenhoft, K. and Lyamin, A.V. (2015), "Strength reduction finite-element limit analysis", Geotech. Lett., 5(4), 250-253. https://doi.org/10.1680/jgele.15.00110
  16. Krabbenhoft, K., Lyamin, A.V., Hjiaj, M. and Sloan, S.W. (2005), "A new discontinuous upper bound limit analysis formulation", J. Numer. Meth. Eng., 63(7), 1069-1088. https://doi.org/10.1002/nme.1314
  17. Li, Y., Emeriault, F., Kastner, R. and Zhang, Z.X. (2009), "Stability analysis of large slurry shield-driven tunnel in soft clay", Tunn. Undergr. Sp. Technol., 24(4), 472-481. https://doi.org/10.1016/j.tust.2008.10.007
  18. Liu, J., Wang, F., He, S., Wang, E. and Zhou, H. (2015), "Enlarging a large-diameter shield tunnel using the pile-beamarch method to create a metro station", Tunn. Undergr. Sp. Technol., 49, 130-143. https://doi.org/10.1016/j.tust.2015.04.006
  19. Lyamin, A.V. and Sloan, S.W. (2002a), "Lower bound limit analysis using non-linear programming", J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511
  20. Lyamin, A.V. and Sloan, S.W. (2002b), "Upper bound limit analysis using linear finite elements and non-linear programming", J. Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198
  21. Mhlhaus, H.B. (1985), "Lower bound solutions for circular tunnels in two and three dimensions", Rock Mech. Rock Eng., 18(1), 37-52. https://doi.org/10.1007/BF01020414
  22. Mollon, G., Dias, D. and Soubra, A.H. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", J. Numer. Anal. Meth. Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962
  23. Osman, A.S., Mair, R.J. and Bolton, M.D. (2006), "On the kinematics of 2d tunnel collapse in undrained clay", Geotechnique, 56(9), 585-595. https://doi.org/10.1680/geot.2006.56.9.585
  24. Pan, Q. and Dias, D. (2017), "Upper-bound analysis on the face stability of a non-circular tunnel", Tunn. Undergr. Sp. Technol., 62, 96-102. https://doi.org/10.1016/j.tust.2016.11.010
  25. Peila, D., Oreste, P.P., Rabajoli, G. and Trabucco, E. (1995), "The pretunnel method, a new Italian technology for full-face tunnel excavation: A numerical approach to design", Tunn. Undergr. Sp. Technol., 10(3), 367-374. https://doi.org/10.1016/0886-7798(95)00017-S
  26. Subrin, D. and Wong, H. (2002), "Tunnel face stability in frictional material: A new 3d failure mechanism", Comptes Rendus Mecanique, 330(7), 513-519. https://doi.org/10.1016/S1631-0721(02)01491-2
  27. Sloan, S.W. (1988), "Lower bound limit analysis using finiteelements and linear-programming", J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105
  28. Sloan, S.W. (1989), "Upper bound limit analysis using finiteelements and linear-programming", J. Numer. Anal. Meth. Geomech., 13(3), 263-282. https://doi.org/10.1002/nag.1610130304
  29. Sloan, S.W. and Assadi, A. (1992), "Undrained stability of a plane strain heading", Can. Geotech. J., 31(3), 443-450. https://doi.org/10.1139/t94-051
  30. Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechnique, 63(7), 531-571. https://doi.org/10.1680/geot.12.RL.001
  31. Sloan, S.W. and Assadi, A. (1991), "Undrained stability of a square tunnel in a soil whose strength increases linearly with depth", Comput. Geotech., 12(4), 321-346. https://doi.org/10.1016/0266-352X(91)90028-E
  32. Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity-fields", Comput. Meth. Appl. Mech. Eng., 127(1-4), 293-314. https://doi.org/10.1016/0045-7825(95)00868-1
  33. Soubra, A.H., Dias, D., Emeriault, F. and Kastner, R. (2008), "Three-dimensional face stability analysis of circular tunnels by a kinematical approach", Proceedings of the GeoCongress 2008, New Orleans, Louisiana, U.S.A., March.
  34. Wilson, D.W., Abbo, A.J., Sloan, S.W. and Lyamin, A.V. (2015), "Undrained stability of dual square tunnels", Acta Geotech., 10(5), 665-682. https://doi.org/10.1007/s11440-014-0340-1
  35. Wu, B.R. and Lee, C.J. (2003), "Ground movements and collapse mechanisms induced by tunneling in clayey soil", J. Phys. Modell. Geotech., 3(4), 15-29.
  36. Xiang, Y., He, S., Cui, Z. and Ma, S. (2005), "A subsurface drift and pile protection scheme for the construction of a shallow metro tunnel", Tunn. Undergr. Sp. Technol., 20(1), 1-5. https://doi.org/10.1016/j.tust.2004.04.001
  37. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan, S.W. and Abbo, A.J. (2011), "Stability of a single tunnel in cohesivefrictional soil subjected to surcharge loading", Can. Geotech. J., 48(12), 1841-1854. https://doi.org/10.1139/t11-078
  38. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan, S.W. and Abbo, A.J. (2013), "Stability of dual circular tunnels in cohesive-frictional soil subjected to surcharge loading", Comput. Geotech., 50, 41-54. https://doi.org/10.1016/j.compgeo.2012.12.008
  39. Yamamoto, K., Lyamin, A.V., Wilson, D.W., Sloan, S.W. and Abbo, A.J. (2014), "Stability of dual square tunnels in cohesivefrictional soil subjected to surcharge loading", Can. Geotech. J., 51(8), 829-843. https://doi.org/10.1139/cgj-2013-0481
  40. Yang, F., Zhang, J., Yang, J., Zhao, L. and Zheng, X. (2015), "Stability analysis of unlined elliptical tunnel using finite element upper-bound method with rigid translatory moving elements", Tunn. Undergr. Sp. Technol., 50, 13-22. https://doi.org/10.1016/j.tust.2015.06.005
  41. Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Technol., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007