• Title/Summary/Keyword: tunnel reinforcement

Search Result 357, Processing Time 0.027 seconds

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF

Development of the Fuzzy Expert System for the Reinforcement of the Tunnel Construction (터널 시공 중 보강공법 선정용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river, This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel (국내 재래식 터널의 변상현황과 배면공동 보강 사례연구)

  • Kim, Young-Muk;Lim, Kwang-Su;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF

Case Studies of Automatic Measurement and strength for Damage in the Public Tunnel (공용중인 터널의 변상에 대한 보강 및 자동화계측 사례)

  • Han Ja-Jung;Kim Young-Ho;Jang Gi-Soo;Kweon Young-Jung;Ahn Sang-Ro
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.270-281
    • /
    • 2005
  • An especial attention for old tunnel safety is required on increasing of The various tunnel recently. Specially, the lining investigation method of the old tunnel will be able to presume condition of concrete lining indirectly. Because it is many restriction thought of environment and ground condition investigation method of tunnel lining rear. This study carried out section & convergence measurement of part which was deformed in tunnel lining. It had been observed for the change of tunnel behavior with a continuous measurement. It has been analyzed for a cause of tunnel deformation and inspected for the effect after a repair-reinforcement to tunnel compared with the effect before those by structure analysis. By establishing automatic measurement system after repair-reinforcement to tunnel, it would be accomplished to convergence measurement continually. As a result, it was observed that deflection and deformation of tunnel was convergent. but it should be followed to a continuous maintenance because of unstable ground condition, cause of inner tunnel, environment. The railroad tunnel which was executed a reinforcement of the tunnel lining must investigate the close condition of reinforcement lining and concrete lining.

  • PDF

A study on the characteristics of tunnel deformation and support system according to tunnel portal reinforcement method (터널 갱구부 보강방법에 따른 터널 변형 및 지보재 응력특성에 관한 연구)

  • Moon, Kyoung-Sun;Seo, Yoon-Sic;Kang, Si-On;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.625-639
    • /
    • 2018
  • This study is about the reinforcing type of reinforcement method which is reinforced in tunnel portal of tunnel with bad ground condition. Generally, it is known that the horizontal reinforcement method is more effective than the conventional reinforcement method. However, as a limitation of the tunnel construction technology, it is being constructed by the superposition reinforcement method. In recent years, high-strength large-diameter steel pipes and horizontally oriented longitudes (L = 30.0~50.0 m) construction technology have been developed. Therefore, it is required to study reinforcement method of tunnel portal reinforcement method. Therefore, 3-D numerical analysis (Midas GTS NX 3D) was performed by setting the reinforcement method (No reinforcement type, overlap reinforcement type and horizontal reinforcement type) and ground condition as parameters. As a result, it was considered that the reinforcement effect was the largest as the horizontal reinforcement type of the reinforcement method was the smallest in the displacement and the support material stress. Based on the results of the numerical analysis, horizontal steel pipe grouting was applied to the actual tunnel site. The displacement of the tunnel portal and the stress of the support material occurred within the allowable values and were considered to ensure sufficient stability.

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

On the optimum design of reinforcement systems for old masonry railway tunnels

  • Ghyasvand, Soheil;Fahimifar, Ahamd;Nejad, Fereidoon Moghadas
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Safety is a most important parameters in underground railway transportation; Also stability of underground tunnel is very important in tunneling engineering. Design of a reliable support system requires an evaluation of both ground demand and support capacity. Iran's traditional railway tunnels are mainly supported with masonry structures or unsupported in high quality rock masses. A decrease in rock mass quality due to changes in groundwater regime creep and fatigue in rock and similar phenomena causes tunnel safety to decrease during time. The case study is an old tunnel in Iran, called "Keshvar"; it is more than 50 years old railway organization. In operating this Tunnel, until the several problems came up based on stability and leaking water. The goal of study is evaluation of the various reinforcement systems for supporting of the tunnel. The optimal selection of the reinforcement system is examined using TOPSIS Fuzzy method in light of the looming and available uncertainties. Several factors such as; the tunnel span, maintenance, drainage, sealing, ventilation, cost and safety were based to choose the method and system of designing. Therefore, by identifying these parameters, an optimal reinforcement system was selected and introduced. Based on optimization system for analysis, it is revealed that the systematic rock bolts and shotcrete protection had a most appropriate result for these kind of tunnel in Iran.

Determination of Reinforcement Method for Abandoned Tunnel by Fuzzy Approximate Reasoning (퍼지근사추론에 의한 폐터널의 보강방식 선정)

  • 조만섭
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.275-286
    • /
    • 2004
  • It is studied to select the reinforcement method of an abandoned tunnel which are intersected under the new roadway line. In the various decision makings, the reasonability for the reinforcement method of an abandoned tunnel was estimated using the pair-wise comparison and the fuzzy approximate reasoning to simplify the process of survey research. And there is reflected all the qualitative and quantitative characterizations by investigation items. In order to select the reinforcement method of an abandoned tunnel, 4 characteristic factors of construction, economical efficiency, safety and maintenance were used. Using the simple survey research and pair-wise comparison matrix, the weight of 4 factors was decided. The fuzzy approximate reasoning was used to calculate the quantitative value of each factor And then reflecting each weight to these results, the final reinforcement method of an abandoned tunnel could be determined.

A Case Study on the Reinforcement Method of Subway Tunnel (도심지 지하철 터널의 지반보강공법 시공사례 연구)

  • 천병식;여유현;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.201-208
    • /
    • 1999
  • The NATM(New Austrian Tunnelling Method) has been used for tunnelling since 1980's. But Collapses of tunnel under construction take place frequently, especially at urban areas because of adjacent buildings, underground conduits and traffic loads. This paper is a case study on the reinforcement method of subway tunnel at urban areas. In this study, ground inspection, geological investigation, laboratory test and numerical analysis by means of FDM program were carried out. The tunnel excavation was stopped because of over excessive brake of tunnel crown and shotcrete was installed to prevent deformation of adjacent ground as the temporary method. From the result of field survey and geological investigation, it is found that the soft weathered soil was distributed to the ground of tunnel invert unlike original investigation. The results of the analysis and the study show that the SGR(Space Grouting Rocket) method and Umbrella method can be applied for the stability of tunnel excavation and in addition the reinforcement of concrete lining is required for long-term stability of tunnel.

  • PDF