• Title/Summary/Keyword: tunnel portal

Search Result 96, Processing Time 0.023 seconds

Anomalous Muscles of the Wrist Encountered During Endoscopic Carpal Tunnel Surgery

  • Park, Se-Hyuck
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.90-95
    • /
    • 2019
  • Objective : Anomalous muscles of the wrist are infrequently encountered during carpal tunnel surgery. Anatomic variants of the palmaris longus (PL), flexor digitorum superficialis, lumbricalis and abductor digiti minimi (ADM) have been reported but are usually clinically insignificant. Anomalies of the wrist muscles, encountered during endoscopic carpal tunnel surgery have rarely been described. I conducted this study to evaluate muscular anomalies of the volar aspect of the wrist, encountered during endoscopic carpal tunnel surgery. Methods : I studied a consecutive series of 1235 hands in 809 patients with carpal tunnel syndrome who underwent single-portal endoscopic carpal tunnel release (ECTR) from 2002 to 2014. Nine hundred seventy-three hands in 644 patients who had minimal 6-month postoperative follow-up were included in the study. The postoperative surgical outcome was assessed at least 6 months after surgery. Results : In eight patients, anomalous muscles were found under the antebrachial fascia at the proximal wrist crease and superficial to the ulnar bursa, passing superficial to the transverse carpal ligament. Those anomalous muscles were presumed to be variants of the PL or accessory ADM muscle, necessitating splitting and retraction to enter the carpal tunnel during the ECTR procedure. Other muscle anomalies were not seen within the carpal tunnel on the endoscopic view. The surgical outcome for all eight wrists was successful at the 6-month postoperative follow-up. Conclusion : Carpal tunnel surgeons, especially those using an endoscope should be familiar with unusual findings of anomalous muscles of the wrist because early recognition of those muscles can contribute to avoiding unnecessary surgical exploration and unsuccessful surgical outcomes.

Stability analysis of a tunnel excavated in weak rocks and the optimal design for the support pattern (연약지반내 굴착터널의 안정성 평가 및 최적보강설계에 관한 연구)

  • 최성웅;신희순
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Geological and geotechnical surveys, in general, should precede the excavation to ensure the safety of the tunnel and should be followed up according to the various geological condition during the excavation. However actually the standard support patterns which were decided during the design step used be insisted for the whole excavation steps in spite of the various geological conditions. OO tunnel was excavated with NATM and a support pattern type-V in weak rocks. When the tunnel was excavated up to 25m long, the severe displacement was generated in the portal area and the shotcrete was damaged to make the cracks and the tunnel face was totally collapsed. It might happen owing to the one-day heavy rain, but the exact reason for that accident should be found out and the new optimal support patternt needed. Consequently three dimensional numerical analysis was applied for the evaluation of the cause of the tunnel collapse instead of two dimensional analysis, because three dimensional analysis can show better the real field phenomenon than two dimensional analysis in which the load distribution methods are adopted for the tunnel excavation. We could simulate the actual situations with three dimensional finite difference code and propose the new optimal support patterns.

  • PDF

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

Measurement and prediction of sonic boom by high speed train at the tunnel exit (고속 전철에 의한 터널 출구에서의 충격성 소음(소닉붐)의 예측 및 실험적 연구)

  • 이수갑;윤태석;정원태;이동호;김동현;강신재
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.369-378
    • /
    • 1998
  • When a high-speed train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel. This wave subsequently emerges form the exit portal of the tunnel, which causes an impulsive noise. In the present study, experimental investigation is carried out on the sonic boom noise with parameters of train speed, blockage ratio, nose shape of train and airshaft. These experimental results show that several countermeasures could be used to efficiently reduce the sonic boom. In addition, numerical analysis is performed to predict the sonic boom. The predicted sound waves are in a good agreement with the experimental results.

  • PDF

Numerical Study on High-Speed railway Tunnel Entrance Hood (고속철도 터널 입구후드에 관한 수치해석적 연구)

  • 김희동;김동현
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.604-611
    • /
    • 1998
  • High-speed railway trains entering and leaving tunnels generate finite amplitude pressure wave which propagate back and forth along the tunnels, reflecting at the open ends of the tunnels and at other discontinuities such as ventilation shafts and the train themselves. In present day railways, the magnitudes of the pressure waves are much too small to cause structual damage, but they are a serious potential source of aural discomport for passengers on unsealed trains. Almost always do the pressure waves propagating along the tunnels lead to a hazardous impulse noise near the exit portal of the tunnel. In order to alleviate such undesirable phenomena, some control strategies have been applied to the compression wave propagating inside the tunnel. The objective of the current work is to investigate the effect of tunnel entrance hoods on the entry compression wave at the vicinity of the tunnel entrance. Three types of entrance hoods were tested by the numerical method using the characteristics of method for a wide range of train speeds. The results show that the maximum pressure gradient of compression wave can be considerably reduced by the tunnel entrance hood. Desirable hood shape for reduction of the pressure transients and impulse noise was found to be of abrupt type hood with its cross-sectional area 2.5times the tunnel area.

  • PDF

New High-performance Supporting System of Shallow Tunnel in Soil (저토피 구간의 신개념 고성능 터널지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Yun, Seung-Gi
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.11-21
    • /
    • 2009
  • This paper presents a new high-performance supporting system of the shallow tunnel. In order to perform this research the mechanism of new supporting system is suggested and compared with the conventional existing supporting system. It is found that the new supporting system as pre-support system has several advantages such as improvement of ground before tunnel excavation and increment of capacity of the tunnel support. The construction procedures of this supporting system are also reviewed. In addition, the numerical simulation is carried out to evaluate the new supporting system. It is found that the new high-performance supporting system is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone, and so on.

Analysis of temperature distribution per length in highway tunnel (공용중인 고속도로 터널내 연장별 온도 조사 분석)

  • Hong, Seung-Ho;Lee, Kyung-Ha;Kim, Nag-Young;Yun, Kyong-Ku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • This paper analyzed characteristic of temperature change as well as bottom of tunnel with thermometer according to tunnel length and region during one year. And it measured temperature distribution near tunnel portal. In the paper it was known that tunnel entrance and exit have different characteristic temperature distribution in accordiance with bottom of tunnel per tunnel length. Temperature of tunnel changed from tunnel exit to fifty meter and distribution of tunnel temperature was established uniform regardless of tunnel length. But temperature distribution of tunnel changed in tunnel entrance differ from tunnel exit in the location of one hundred twenty five meter and one hundred fifty meter. Cold air inflowed from tunnel entrance have influenced with the location of one hundred twenty five meter and one hundred fifty meter.

  • PDF

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave (고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.249-260
    • /
    • 2014
  • When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

Analysis of Environmental Load by Work Classification for NATM Tunnels (NATM터널의 공종별 환경부하 특성 분석)

  • Lee, Ju-hyun;Shim, Jin Ah;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.307-315
    • /
    • 2016
  • Many countries are trying to reduce a greenhouse gas to step up their fight against climate change. There are many studies related to building only for reducing a greenhouse gas in construction area but studies related to reducing a comprehensive environmental load including various pollutants that affects the global environment are lacking. This study aims to analyse the characteristics of environmental load by work type for tunnel projects. Analysis showed that seven work types, including lining concrete, shotcrete, tunnel portal and open-cut tunnel work, etc., are representative works generated environmental load. These seven works represent 89.22 percent of total environmental load. In addition, comparison results of environmental load per tunnel's length by work type showed that a major factor of environmental load is caused by a tunnel portal and open-cut tunnel work with relatively short length (excavation length). And lining concrete and shotcrete work are larger than any other environmental load with tunnel's total length. It is expected that the result of this study will be used to make a estimation model for environmental load using approximate quantity survey of representative work types in the early stage of tunnel design. And it will be play a considerable role in establishing of environment management plan for sustainable infrastructure construction.