DOI QR코드

DOI QR Code

A study on the characteristics for aerodynamics at high speed in railway tunnels - focused on the micro pressure wave

고속주행시 철도터널내 공기압 특성에 관한 기초연구 - 미기압(MPW)을 중심으로

  • Received : 2014.03.13
  • Accepted : 2014.03.25
  • Published : 2014.03.30

Abstract

When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.

열차가 고속으로 터널을 진입할 때 압축파가 발생하게 된다. 이 압축파가 터널 출구부에 도달하면 일부는 외부로 방출되고 일부는 팽창파의 형태로 반사되어 터널내부로 전파된다. 이러한 파는 충격파의 형태로 외부로 방출되는데, 이를 미기압(micro pressure wave)이라고 한다. 미기압파는 터널 출구부에 소음 및 진동문제를 일으키며, 이 현상이 클수록 민가 및 주변 유리창에 손상과 거주자의 불안을 일으키는 원인이 된다. 따라서 고속철도 건설을 위해서는 미기압에 대한 대책과 이에 대한 예측이 필요한 실정이다. 이에 본 연구는 운영중인 터널에서의 미기압 측정사례와 터널내 압력기울기에 대한 수치해석을 통하여, 차량의 전두부 형상 및 터널 갱구부 형상에 따른 영향을 분석하였다. 그 결과로, 본 연구에서는 미기압파의 강도를 예측하는 방법을 제시하였으며, 이를 통해서 터널 연장과 단면적에 따른 미기압 강도를 해석하였다.

Keywords

References

  1. Bannister, Mucklow. (1948), "Wave action following sudden release of compressed gas from a cylinder", Proc. Inst. Mech. Eng., Vol. 159, No. 42, p. 269. https://doi.org/10.1243/PIME_PROC_1948_159_024_02
  2. Pope, C.W. (1975), "Transient pressures in tunnels - a formula predicting the strength of the entry wave produced by trains with streamlined and unstreamlined noses", British Railways Research and Development Division Tech. Memo. Aero 12.
  3. Ozawa, S. (1979), "Studies of micro-pressure wave radiated from a tunnel exit", Railway Technical Research Report of Japanese National Railways, No. 1121, pp. 1-92.
  4. Matsuo, K., Aoki, T., Kashimura, H., Kawaguchi, M., Takeuchi, N. (1991), "Attenuation of compression waves in a high-speed railway tunnel simulator", 7th international Symposium on AVVT, pp. 239-252.
  5. Ozawa, S., Maeda, T., Matsumura, T., Uchida, K., Kajiyama, H., Tanemoto, K. (1991), "Countermeasures to reduce micro-pressure waves radiating from exits of shikansen tunnels", 11th international Symposium on AVVT, pp. 253-266.
  6. Matsuo, K., Aoki, T., Kashimura, H. (1994), "Generation mechanism of impulsive wave emited from high-speed railway tunnel exit", 8th international Symposium on AVVT, pp. 199-209.
  7. Matsuo, K, Aoki, T., Mashimo, S., Nakatsu, E. (1997), "Entry compression wave generated by a high-speed train entering a tunnel", 9th international Symposium on AVVT, pp. 925-934.
  8. Wu, D. (2000), "Prediction of pressure wave generation by high-speed train entering tunnel using a commercial CFD code - a simplified approach", 10th international Symposium on AVVT, pp. 767-777.
  9. Ozawa, S., Murata, K. (2000), "A pressure wave emitted from openings of tunnel wall", 10th international Symposium on AVVT, pp. 757-765.
  10. Wu, D., Chiu, T. (2003), "Aerodynamic aspects of a high-speed railway station with adjoining tunnels", 11th international Symposium on AVVT, pp. 715-725.
  11. Ozawa, S. (2003), "Countermeasures for reducing micro-pressure wave at the stage of propagation of the compression wave through a tunnel", 11th international Symposium on AVVT, pp. 389-402.
  12. Herb, J., Deeg, P., Tielkes, T. (2003), "Assessment of possible sonic boom effects in German highspeed railway tunnels - experimental and numerical data for the wave steepening process", 11th international Symposium on AVVT, pp. 775-782.
  13. Fukuda, T., Miyachi, T., Iida, M. (2006), "Propagation of compression wave in a long slab-tracked tunnel and ballast-tracked tunnel", 12th international Symposium on AVVT, pp. 777-788.
  14. Vardy, A.E. (2008), "Generation and alleviation of sonic booms from rail tunnels, proc. of the institution of civil engineers", Engineering and Computational Mechanics, pp. 107-119.
  15. Kim, H.D. (1994), "Wave phenomenon in highspeed railway tunnel", Korean Society of Mechanical Engineers, Vol. 34, No. 10, pp. 796-807.
  16. Bumchang, Eng. (2007), Basic design of highspeed railway construction project in Ho-nam line - verification report based on the tunnel crosssection, pp. 86-87.