• Title/Summary/Keyword: tunnel face pressure

Search Result 115, Processing Time 0.019 seconds

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM (Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술)

  • Park, Jin-Ho;Lee, Kang-Hyun;Shin, Young-Jin;Kim, Jae-Young;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.599-614
    • /
    • 2014
  • When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (II) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(II))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.499-509
    • /
    • 2016
  • In recent years, the use of underground spaces becomes more frequent and the demands for urban tunnels are rapidly increasing. The urban tunnels constructed in the ground with a shallow and soft cover might be deformed in various forms on the face, which would lead, the tunnels to behavior 3-dimensionally, which may have a great impact on the longitudinal load transfer. The tunnel face might deform in various forms depending on the construction method, overburden and the heterogeneity of the ground. And accordingly, the type and size of the distribution of the load transferred to the ground adjacent to the tunnel face as well as the form of the loosened ground may appear in various ways depending on the deformation form of the tunnel face. Therefore, in this study was conducted model tests by idealizing the deformation behavior of the tunnel face, that were constant deformation, the maximum deformation on the top and the maximum deformation on the bottom. And the test results were analyzed focusing on the deformation of the face and the longitudinal load transfer at the ground above the tunnel. As results, it turned out that the size and the distribution type of the load, which was transferred to the tunnel as well as the earth pressure on the face were affected by the deformation type of the face. The largest load was transferred to the tunnel when the deformation was in a constant form. Less load was transferred when the maximum deformation on the bottom, and the least load was transferred when the maximum deformation on the top. In addition, it turned out that, if the cover became more shallow, a longitudinal load transfer in the tunnel would limited to the region close to the face; however, if the cover became higher than a certain value, the area of the load transfer would become wider.

Hydraulic behavior of a subsea tunnel in a ground with fractured-zones (파쇄대를 통과하는 해저터널의 수리거동에 관한 연구)

  • Shin, Jong-Ho;Choi, Kyu-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1571-1580
    • /
    • 2008
  • Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.

  • PDF

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin;Yao, Kai;Li, Hong
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

Longitudinal Arching Characteristics Around the Face of a Soil-Tunnel with Crown and Face-Reinforcement (굴진면 천단 및 수평보강에 따른 굴진면 전후의 종방향 아칭 특성)

  • Kwon Oh-Yeob;Choi Yong-Ki;Lee Sang-Duk;Kim Young-Gun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.133-144
    • /
    • 2004
  • Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.