• Title/Summary/Keyword: tunnel construction

Search Result 1,870, Processing Time 0.033 seconds

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

A case study on efficient non pilot 2-Arch Tunnel in the urban (도심지에서 효율적인 무도갱 2-Arch 터널의 설계사례)

  • Yoon, Il-Byung;Kang, Hee-June;Kim, Hong-Dae;Kim, Dong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.543-552
    • /
    • 2010
  • Due to increase in urban tunnelling as urban population and traffic volume increase, problems related with site security and civil appeal also increase. This paper presents a comparative analysis between conventional 2-arch tunnel method and non-pilot 2 arch tunnel method, which were performed in the basic design of Wie-Rae region. According to the analysis results, non-pilot 2-arch tunnel method is more efficient in terms of stability, constructability, and economic aspect. It is authors' wish that design procedure and method presented in this paper could help the design and construction of non-pilot 2-arch tunnel that should be planned in the near future.

  • PDF

The Application of Safety Impact Assessment to Tunnel Construction (터널공사에서의 안전영향평가의 적용)

  • Kim, Byung-Sik;Choi, Bong-Joon;Seo, Jong-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.545-548
    • /
    • 2008
  • In this study, the concept of safety impact assessment to achieve 'Design-for-Safety' in design phase is introduced. For this purpose, safety impact assessment model was devised and a methodology using the risk-based safety impact assessment approach for NATM of tunnel projects is suggested. The suggested methodology includes safety information survey, classification of safety impact factors caused by design and construction, and quantitative estimation of magnitude and frequency of safety impact factors. A real-world case study on the safety impact assessment of a tunnel construction project is also provided in the paper.

  • PDF

Study on qunatified management for tunnel collapses on construction based on the KICT Tunnel Collapse Hazard index(KTH-Index) (터널 붕괴 위험도 지수(KTH-Index)에 기반한 터널 시공 중 붕괴 위험도 정량적 관리 사례 연구)

  • Kim, Young-Yun;Choi, Yu-Mi;Baek, Yong;Shin, Hyu-Soung;Kim, Bum-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1294-1301
    • /
    • 2010
  • In this study, a case study, where a hazard management for tunnel collapses has been quantitatively undertaken based on the KICT Tunnel Hazard(KTH) index, is presented. From this, it was able to timely inform the field engineers when the more detailed investigation is required for checking if any risky factor is shown on the tunnel face. At the same time, variable additional information such as sensitivities of major influence factors are also provided to field engineers from the methodology given in this study. The additional information would be helpful for better understanding of tunnel hazard level at the current tunnelling stage and following the required actions for more detailed checks of risky factors.

  • PDF

Development of Tunnel Asset Management (TAM) Program

  • Hamed Zamenian;Dae-Hyun (Dan) Koo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.576-582
    • /
    • 2013
  • Typical highway infrastructure systems include roadway pavement, drainage systems, tunneling, and other hardware components such as guardrails, traffic signs, and lighting. Tunnels in a highway system have provided significant advantages to overcoming various natural challenges including crossing underneath bodies of water or through mountainous areas. While only a few tunnel failure cases have been reported, the failure rate is likely to increase as these assets age and because agencies have not emphasized tunneling asset management. A tunnel system undergoes a deterioration life cycle pattern that is similar to other infrastructure systems. There are very few agencies in the United States implementing comprehensive tunnel asset management programs. While current tunnel asset management programs focus on inspection, maintenance, and operation safety, there is an increasing need for the development of a comprehensive life cycle tunnel asset management program. This paper describes a conceptual framework for a comprehensive tunnel asset management program. The framework consists of three basic phases including a strategic plan, a tactical plan, and an operational plan to provide better information to the decision makers. The strategic plan is a basic long term approach of tunnel asset management. The tactical plan determines specific objectives and the operational plan actually applies asset management objectives in practice. The information includes operational condition, structural condition, efficiency of the system, emergency response, and life cycle cost analysis for tunnel capital improvement project planning.

  • PDF

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

A Development of Tunnel Grouting Programme using A Research of Grouting Construction Process (터널 차수 그라우팅 시공 프로세스 연구를 통한 프로그램 개발)

  • Kim, Jin-Chun;Yoo, Byung-Sun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • The purpose of this study is to provide an integrated solution which includes construction process that allows effective tunnel grouting and to develop a tunnel grouting programme by establishing an algorithm through theoretical analysis on tunnel grouting construction technique factors. In order to verify the developed tunnel grouting procedure and the effectiveness of the programme, they are applied on certain work sites. Values after the application are Lu = 0.31 and ground-water inflow = 0.191/min where as the pre-application value of ground-water inflow is 6.691/min which is approximately 35 times larger. This shows that Tunnel grouting construction effect is significant and suggests the possibility of the application of the process and the programme on future tunnel grouting construction.

Risk analysis and countermeasures for subsea tunnel planning of national road 77 construction work between Abhae and Hwawon (압해-화원 간 국도77호선 건설공사 해저터널 계획을 위한 리스크 분석 및 대책방안)

  • Kim, Young-Joon;Kim, Zu-Cheol;Lee, Jae-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.15-38
    • /
    • 2022
  • Recently, tunnel technology in Korea has shown various achievements such as long tunnel and large section by tunnel construction using TBM in Korea and abroad. Especially subsea tunnels are frequently designed and constructed. The Ga-deok subsea tunnel was completed in December 2010, and the Incheon North Port Tunnel was opened and operated in 2017, and the Bo-ryeong subsea tunnel between Dae-cheon Port and Won-san Island will be completed in 2021. In foreign countries, many subsea tunnels have been constructed and operated in such as Norway and Japan. The main technical problem in the construction of subsea tunnel is to secure stability due to high water pressure conditions and large-scale seawater inflow in fault zones and weak zones. In this paper, various risk factors and solutions are described in the subsea tunnel planning of national road 77 construction work between Abhae and Hwawon.

A Case Study on the Design of Railway Tunnel through section for under OO temple (OO 사찰 하부 터널통과 설계 사례)

  • Kim, Shin;Lee, Sung-Ki;Seo, Hyoung-Chul;Kwag, Jung-Yeol;Cho, Bong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.208-218
    • /
    • 2006
  • It is very important to evaluate predictable problems diversely such as stability of a tunnel and structures when tunnel is inevitably constructed in the area where is adjacent to a structure and low overburden. Double electrified railway design on the third section of Donghae-Nambu line studied in this paper has some problems mentioned above. So more careful works are required before construction. In this study, ground surrounding is composed of faults, fault zone and set back about 13m from a Buddhist temple located on the upper part of the tunnel. From these conditions, this case study presents proper methods considering ground condition, effects of blasting and civil petitions. It is tried to make the tunnel and Buddhist temple stable by analytical technique and analysis of existing cases. And design considering stability of tunnel and adjacent structure during operation is carried out as well. Especially, environmentally friendly railway tunnel which is appropriate to the local condition and surroundings is designed by minimizing noise and vibration that is able to occur during construction and train service. From now on, this study is helpful to better design in the case of tunnel design which has to consider civil petition.

  • PDF