• Title/Summary/Keyword: tunnel collapses

Search Result 31, Processing Time 0.025 seconds

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

Heading Failure Modes during Underground Excavation (지하공간 건설에 따른 굴착전면의 파괴모드)

  • Kwon, Oh-Yeob;Cho, Jae-Wan;Shin, Jong-Ho;Choi, Ypng-Ki;Shin, Yong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.409-416
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to tunnel collapses. A failure mode is one of the critical factors in the conventional methods of stability analysis. Therefore identification of failure modes is essential in securing safe construction in the phase of design analysis, instrumentation planning and implementation of reinforcing measures. In this study failure modes at the tunnel heading in granular soils are investigated using physical model tests and numerical simulation for various tunnel depths and ground surface inclinations. Test results indicated that the effect of depth and inclination of ground surface on a failure mode are significant. It is identified that, with an incase in depth, failure modes become localized in a region close to the tunnel. It is also known that an increase in the inclination of ground surface results in inclined and wide failure modes.

  • PDF

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

A Study on the Pattern of Tunnel Collapse in Weathered Rockmass (풍화파쇄대에서 발생하는 터널 붕락 유형 연구)

  • Kim, Nagyoung;Park, Youngho;Shim, Jaewon;Park, Yongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, highway tunnel construction has rapidly been increased due to the limited ground usage and geographical characteristic in Korea, i.e. Korea consists of 70% mountains. In this paper, it was analyzed tunnel collapse patterns in the weathered rockmass. Recent tunnel collapse pattern is quite different from that of past ten years. Tunnels in past years have been collapsed at shallow valley area because of shear strength decrease after heavy rain. Tunnels, which have been constructed recently, were collapsed at even the deeper ground position after primary support. Also in the case that proper reinforcement was not applied, it caused excessive crack at shotcrete and local collapse near tunnel face. In this paper, it was analysed the cause of the recent tunnel collapses and proper reinforcement for the collapsed tunnels.

  • PDF

Application of risk evaluation and safety management system in urban deep tunnelling (도심지 대심도 터널에서의 리스크 평가 및 안전관리시스템 적용)

  • Moon, Joon-Shik;Jeon, Kichan;Kim, Younggeun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.725-744
    • /
    • 2022
  • As the construction of infrastructure using the underground tunnel in urban area have been rapidly increased, various accidents and collapses of tunnel including structure have been occurred in deep urban tunnelling. The concern and worry relating to the risk and safety of the tunnel during excavation is becoming the key issues in deep urban tunnelling. In this study, it was conducted for deep urban tunnel at GTX (Great Train Express) line which was located in Seoul metropolitan area to determine the risk characteristics for tunnel according to urban tunnelling. Also, it was reviewed the risk analysis and evaluation of the tunnel, shaft and station. And after a review of risk analysis and evaluation for risk register and hazard identification by using a risk matrix method, safety management of the tunnel according to excavation was evaluated to be secured. This study is expected to be applied as useful approach in deep urban tunnelling if you need to review the risk and safety management system of tunnel according to mitigation measures in complex urban tunnelling.

Case Study on the Tunnel Collapses during the Construction and Application of Geotechnical Investigation (터널 시공 중 지반 관련 사고 사례의 원인 분석과 지반 조사 결과의 활용에 관한 검토)

  • Park, Nam-Seo;Lee, Chi-Mun;Gang, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.47-60
    • /
    • 1998
  • It is considered in this paper that the main causes of tunnel collapse during the construction were the insufficiency of data of geotechnical investigations, or their limits due to special ground condition such as its heterogeneity and anisotropy It is thought that safety of ground can be affected by the geological conditions such as presences of discontinuities in good intact rocks, and considered to be necessary that awareness of the conditions of discontinuities in advance is important to apply adequate reinforcement measures. It is also shown that a serious accident had occurred because of the unawareness of the permeable alluvial deposits at the top of the tunnel. And it is shown that the example of application of the results of geotechnical investigation such as face-mapping, pilot boring etc. during tunnel construction, and a serious deformation of tunnel under special geological condition. Therefore, it is strongly recommended to perform an adequate geotechnical investigation to confirm the geotechnical conditons of ground before design, and supplimentary investigation is also needed depending on conditions for safe and econonic construction.

  • PDF

A Study of effective installation patterns of face bolts using 3D-FDM analysis (터널 안정화를 위한 페이스볼트의 효율적 배치에 관한 수치해석적 연구)

  • Seo, Kyoung-Won;Bae, Gyu-Jin;Nishimura, Kazuo;Domon, Tsuyoshi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.141-149
    • /
    • 2006
  • For application of NATM, the self-supporting until installation of the supporting system must be satisfied. However, the face of a tunnel are always unsupported and therefore it is fairly vulnerable to tunnel collapses. Face blots are well known and widely used to prevent the deformation of the tunnel face and its circumference, which are installed horizontally toward the tunnel axis generally. To maximize the supporting effect of face bolts, this study has analysed the effective design patterns of face bolts by changing their installation angles. As the conclusion, it has been found that the axial displacement of the face increases slightly by installing the outermost bolts upward from the axis but surface settlement at 2.5D behind the face decreases up to 18%.

  • PDF

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

Experimental investigation of the aeroelastic behavior of a complex prismatic element

  • Nguyen, Cung Huy;Freda, Andrea;Solari, Giovanni;Tubino, Federica
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.683-699
    • /
    • 2015
  • Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.