• 제목/요약/키워드: tunnel Barrier

검색결과 232건 처리시간 0.016초

벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A (Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A)

  • 이재원;이창수;김건영
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.382-393
    • /
    • 2020
  • 고준위방사성폐기물을 처분하기 위한 심층처분시스템의 공학적 방벽은 처분 용기에서 방사성 핵종 누출이 발생하더라도 주변 암반으로의 누출 속도를 늦춰주는 역할을 수행해야하기 때문에 장기적으로 그 성능을 유지하여야 한다. 특히 벤토나이트 완충재와 같이 점토 물질을 다량 함유한 매질에서만 나타나는 기체 흐름 현상인 팽창 흐름은 벤토나이트 완충재의 장기 성능에 영향을 미칠 수 있기 때문에 이 현상을 명확히 규명하는 것이 매우 중요하다. 이에 따라 DECOVALEX-2019 Task A에서는 팽창 흐름에 대한 수리-역학적 메커니즘을 규명하고, 기체 이동 현상의 정량적 평가를 위한 새로운 수치 해석 기법 개발 및 검증을 수행하고자 진행되었다. 이를 위해 본 연구에서는 기존의 전통적인 다공성 매질에서의 2상 유동 및 유효응력 개념을 고려한 역학 모델을 기반으로, 손상도 개념을 적용함으로써 매질의 변형에 의한 기체의 팽창 흐름을 모사할 수 있는 수리-역학적 상호작용을 고려한 해석 모델을 개발하였다. 또한 개발된 모델을 이용하여 1차원 및 3차원 기체 주입 시험 결과와의 비교를 통해 모델 검증 및 적용성 검토를 수행하였다. 수치 해석 결과 기체 압력에 의한 팽창 흐름으로 인한 갑작스러운 공극 수압, 응력, 기체 주입량 및 유출량 증가 현상을 확인할 수 있었지만, 개발된 해석 모델에서 수리-역학적 상호작용의 영향이 과소평가 되는 한계를 확인할 수 있었다. 그럼에도 불구하고 본 연구는 팽창 흐름에 대한 예비 모델을 제공하고 후속 연구의 발전된 모델을 개발하기 위한 기반을 제공한다는 점에서 의의가 있다. 또한 본 연구에서 개발된 수리-역학적 상호작용을 고려한 수치 모델은 향후 실험실 및 현장 시험 결과 데이터 분석에 활용될 수 있을 뿐만 아니라, 실제 고준위방사성폐기물 심층처분시스템의 장기 성능평가에도 활용될 수 있을 것으로 판단된다.

수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B (Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B)

  • 윤정석
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.320-334
    • /
    • 2020
  • 본 수치해석연구에서는 국제공동연구프로젝트 DECOVALEX2019의 Task B의 일환으로 PFC3D를 기반으로한 수리역학연계모델을 개발하여 스위스 Mont Terri 지하연구시설에서 수행된 단층의 유체주입으로 인한 슬립시험을 모사하였다. 이를통해, 개발한 PFC3D 수리역학연계모델이 가진 한계점과 향후 보완할 점을 검토하고자 하였다. PFC3D를 기반으로한 3차원 입자결합모델 내 공극-유동통로모델을 생성하였으며 이를 사용하여 Mont Terri Step 2 단층내 유체주입실험을 모사하였다. 모델링결과 단층대를 따라 주입유체의 유동에 의한 단층대의 변형을 확인하였지만, 관측정에서의 시간에 따른 수압변화는 현장측정치와 부분적으로 일치하는 경향을 확인하였다. 현장측정 관측수압은 초기 유체주입 압력증가에 거의 변화를 보이지 않고 주입수압이 최대치에 도달할때쯤 급격한 증가를 보이는반면, 모델링에서는 주입압력이 증가함에 따라 관측수압도 부드럽게 증가하는 경향을 보였다. 이러한 부분적으로 일치하는 결과의 원인으로는 Mont Terri 현장의 단층을 모사하는 방법에 기인하는 것으로 판단하다. PFC3D에서는 단층을 손상대와 코어균열의 조합으로 모사하였고 단층대의 두께가 약 2 m로 주입유체가 단층대를 통해 유동하도록 모사하였기에 현장에서의 주입유체의 단층내 유동보다 그 유동범위가 크게 모사되었다고 판단한다. 또한, 현장단층에서와 같이 단층내부에 존재하는 충진물질로 인해 단층내 수리유동이 제한되어 국부적으로 과잉공급수압이 형성될 수 있는 기재를 모사하지 못한 점 또한 모델링 결과와 현장측정결과가 부분적으로 일치하는 원인일 수 있다. 단층변형의 경우는 모델링결과와 현장측정결과 유사한 수준으로 일치하는 결과를 확인하였다. 수치모델을 변형하여 단층대의 두께를 감소시키고 단층내 충진 물질의 비균질적인분포를 모사할 수 있는 방법론에 대한 후속 연구를 통해 PFC3D 수리역학연계모델의 유체주입으로 인한 단층활성화 연구로의 적용성을 향상시키는 것을 제안하고 한다.