• Title/Summary/Keyword: tungsten carbide/carbon coating

Search Result 20, Processing Time 0.021 seconds

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

Microstructure analysis of DLC thin film fabricated by filtered arc ion plating method

  • Park, Y.P.;Kim, T.G.;Cheon, M.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.363-367
    • /
    • 2012
  • DLC (diamond liked carbon) coating of the tungsten carbide (WC) alloy core surface for molding a glass aspheric lens improves the quality of glass lens and the molding core and is characterized by high hardness, high elasticity, abrasion resistance and chemical stability. In this study, the effect of DLC coating of a thin film by means of the filtered AIP (arc ion plating) technique was examined on Ra and shape of the coated surface. Roughness before and after DLC coating was measured and the result showed that the roughness was improved after coating as compared to before coating. It was observed that DLC coating of the WC alloy core surface for molding had an effect on improving the roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing (탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

Characteristic of DLC Thin Film Fabricated by FVAS Method on Tungsten Carbide (초경합금에 FVAS로 코팅한 DLC 박막의 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Tae-Gon;Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.812-816
    • /
    • 2011
  • An optical lens is usually produced in the manner of high temperature compression molding with tungsten carbide alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coating the core surface. As main methods used in surface improvement technologies using thin film, DLC present high hardness, chemical stability, and outstanding durability of abrasion to be extensively applied in various industrial fields. In this study, the effect of DLC coating of a thin film by means of the FVAS (filtered vacuum arc source) analyzed the characteristics of thin film. Surface roughness before and after DLC coating was measured and the result showed that the surface roughness was improved after coating as compared to before coating. In conclusion, it was observed that DLC coating of the ultra hard alloy core surface for molding had an effect on improving the surface roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

DLC Coating Effect of WC Core Surface for Glass Molding Lens (비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Park, Yong-Pil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.