• Title/Summary/Keyword: tunable gain

Search Result 64, Processing Time 0.036 seconds

Accurate Tunable-Gain 1/x Circuit Using Capacitor Charging Scheme

  • Yang, Byung-Do;Heo, Seo Weon
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.972-978
    • /
    • 2015
  • This paper proposes an accurate tunable-gain 1/x circuit. The output voltage of the 1/x circuit is generated by using a capacitor charging time that is inversely proportional to the input voltage. The output voltage is independent of the process parameters, because the output voltage depends on the ratios of the capacitors, resistors, and current mirrors. The voltage gain of the 1/x circuit is tuned by a 10-bit digital code. The 1/x circuit was fabricated using a $0.18{\mu}m$ CMOS process. Its core area is $0.011mm^2$ ($144{\mu}m{\times}78{\mu}m$), and it consumes $278{\mu}W$ at $V_{DD}=1.8V$ and $f_{CLK}=1MHz$. Its error is within 1.7% at $V_{IN}=0.05V$ to 1 V.

Electronically Tunable Current gain FTFN using OTAs

  • Arayawat, Somjai;Chaikla, Amphawan;Riewruja, Vanchai;Trisuwannawat, Thanit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1196-1198
    • /
    • 2005
  • This paper presents the realization of a four-terminal floating nullor (FTFN), which is simple configuration comprised three OTAs. The external bias currents of the OTAs can electronically adjust the current gain of the proposed FTFN. The realization method is suitable for implementation in monolithic integrated form. To demonstrate the circuit performances, the proposed FTFN was simulated by the use of the PSPICE analog simulation program and implemented using the commercially available OTAs. The simulation and experimental results verifying the performances of the proposed circuit are agreed with the theoretical values. Some application example in the design of the proposed FTFN as electronically tunable active element are also included.

  • PDF

Theoretical analysis of the transmission gain spectrum of a phase-shift-controlled DFB tunable filter (위상 천이 조정 DFB 파장 가변 필터의 투과 증폭 스펙트럼에 관한 이론적 해석)

  • 김부균;정기숙;이봉영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.205-215
    • /
    • 1996
  • We derive the analytic equations for the transmission gain spectrum of a phase shift controlled (PSC) DFB filters with complexed coupled gratings considering both facet reflections and the phase of gratings using the transfer matrix method. The number of parameters of the equations is reduced by using the parameter of effective phase shift defined by the sum of the phase shift in a PSC region the effect of both facets reflections and the effective phase shift on the transmission gain spectrum and verify the validity of those equations from the computer simulation results. Computer simulation results show the PSC DFB filter with a pure index coupled grating has the widest tunable range and that with a pure gain grating has the largest side mode suppression ratio.

  • PDF

Strain-imposed External Cavity Tunable Lasers Operating for NIR Wavelength

  • Kim, Jun-Whee;Kim, Kyung-Jo;Son, Nam-Seon;Oh, Min-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.172-176
    • /
    • 2013
  • For demonstrating widely tunable external cavity lasers operating for near-infrared (NIR) wavelength, a flexible polymer waveguide with an imbedded Bragg grating is incorporated. Due to the superior flexibility of the polymer material, the reflection wavelength of the Bragg grating is widely tunable by imposing tensile and compressive strains on the flexible Bragg grating. A third-order Bragg grating is formed on the device for facilitating the fabrication method. With a superluminescent laser diode as a gain medium of ECL, the tunable laser exhibited output power of -3 dBm and a tuning range of 32 nm.

New negative capacitance front-end for bioimpedance measurements (생체 임피던스 측정을 위한 새로운 네가티브 커패시턴스 프론트 엔드)

  • 권석영;김영필;황인덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2753-2756
    • /
    • 2003
  • A convenient, tunable loop-gain negative impedance circuit that increases input impedance of a front-end in a bioimpedance measurement has been proposed. Since the proposed circuit comprises wide-band operational amplifiers, selecting operational amplifiers is easy, while an operational amplifier of proper bandwidth should be chosen to use conventional circuit. Also, since loop-gain can be controlled by a feedback resistor connected serially with a feedback capacitor, loop-gain is tunable with a potentiometer. The input impedance of the proposed circuit is two times larger than that of the conventional circuit. Furthermore, closed loop phase response of the proposed circuit is better than that of the conventional circuit or without a negative capacitance circuit. The implemeted, proposed circuit showed stable operation and a zero input capacitance.

  • PDF

A Design of Voltage-controlled frequency Tunable Integrator (전압조절 주파수 가변 적분기 설계)

  • 이근호;이종인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.891-896
    • /
    • 2002
  • In this paper, a new voltage-controlled tunable integrator for low-voltage applications is proposed. The proposed active element is composed of the CMOS complementary cascode circuit which can extend transconductance of an element. Therefore, the unity gain frequency which is determined transcon-ductance is increased than that of the conventional element. And then these results are verified by the $0.25{\mu}m$ CMOS n-well parameter HSPICE simulation. As a result, the gain and the unity gain frequency are 42dB and 200MHz respectively in the element on 2V supply voltage. And power dissipation of the designed circuit is 0.32mW.

Tunable Photonic Microwave Band-pass Filter with High-resolution Using XGM Effect of an RSOA

  • Kwon, Won-Bae;Lee, Chung Ghiu;Seo, Dongjun;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.563-567
    • /
    • 2018
  • We propose and experimentally demonstrate a simple tunable photonic microwave band-pass filter with high resolution using a reflective semiconductor optical amplifier (RSOA) and an optical time-delay line. The RSOA is used as a gain medium for generating cross-gain modulation (XGM) effect as well as an optical source. The optical source provides narrow spectral width by self-injection locking the RSOA in conjunction with a partial reflection filter with specific center wavelength. Then, when the RSOA is operated in the saturation region and the modulated recursive signal is injected into the RSOA, the recursive signal is inversely copied to the injection locked optical source due to the XGM effect. Also, the tunability of the passband of the proposed microwave filter is shown by controlling an optical time-delay line in a recursive loop.

Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • This letter presents a compact metamaterial-based tunable zeroth-order resonant antenna. It is based on the double-negative unit cell with a function of tunable inductance realized by a varactor and impedance convertor in the shunt branch. The resonant frequency of the designed antenna ranges from 2.31 to 3.08 GHz, depending on the capacitance of the used varactor. Its size is very compact ($0.05{\lambda}_0{\times}0.2{\lambda}_0$) with a relatively wide tunable range of 29.1%. The impedance bandwidth of the antenna is from 20 to 50 MHz for the resonant center frequency. The measured maximum total realized gain is from -0.68 dBi (2.43 GHz) to 1.69 dBi (2.97 GHz). The EM-simulated and measured results are in good agreement.

Electronically Tunable Current-Mode Second-Order Multifunctional Filter Using FTFNs and Dual-Output OTAs

  • Tangsrirat, Worapong;Anuntahirunrat, Kongsak;Surakampontorn, Wanlop
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.2-99
    • /
    • 2001
  • An electronically tunable current-mode second-order multifunctional filter is described in this paper. The proposed filter consists of two four-terminal floating nullors (FTFNs), two dual-output OTAs and two grounded capacitors. The circuit can simultaneously realize the lowpass, bandpass and highpass current transfer functions from the same configuration without changing the circuit configuration and elements. The natural angular frequency we and the parameter wo/Q can be orthogonally controlled through adjusting the transconductance gain of OTA. PSPICE simulation results are employed to confirm the circuit performance.

  • PDF

A Study on Characteristics for Phase Considered Tunable Three Section DFB-LD (위상을 고려한 3전극 가변파장 DFB-LD의 특성 연구)

  • Youn, Kyeong-Mo;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.123-135
    • /
    • 1995
  • In this paper, we performed the modeling of a tunable three section DFB-LD with continuous phase using the coupled-wave equation. It was also proposed new modeling method for ${\lambda}/4$ phase shifted one. We got the characteristics of oscillation wavelength, gain, and photon density profiles according to parameters such as coupling coefficient K and current into the third sections for two case of continuous phase and ${\lambda}/4$ shifted phase one. The simulations for ${\lambda}/4$ phase shifted tunable three section DFB-LD prove that the continuous tuning range is about 4.2nm for $K=120cm^{-1}$, $L=180{\mu}m$, and the oscillation mode be within the stop-bands. Also when changed a current of both end sections, it is shown that a photon density reaches the maximum at the center.

  • PDF