• 제목/요약/키워드: tumor suppression

검색결과 414건 처리시간 0.027초

L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation

  • Kim, Haejung;Hwang, Haein;Lee, Hansoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.363-370
    • /
    • 2017
  • Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과 (Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition)

  • 박숙자;안이슬;노규표;유병혁;이종록
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.117-124
    • /
    • 2019
  • Objective : Broccoli is edible green plant that has a wide variety of health benefits including cancer prevention and cholesterol reduction. However, leaves of broccoli are not eaten and are mostly left as waste. This study was conducted to evaluate the effects of the broccoli leaf extract (BLE) on prostaglandin E2 (PGE2) production related to nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-activated macrophages. Methods : BLE was prepared by extracting dried leaf with ethanol. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PGE2 and inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Expression level of each protein was monitored by Western blot analysis. Results : In LPS-activated Raw264.7 cells, PGE2 release into culture medium was dramatically enhanced compared to control cells. However, increased PGE2 was attenuated dose-dependently by treatment with BLE. Inhibition of PGE2 production by BLE was due to the suppression of cyclooxygenase-2 (COX-2) expression determined by Western blot analysis. BLE also inhibited the production of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Inhibition at PGE2 and cytokine was mediated from inhibition of nuclear translocation of NF-κB due to the repression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation. Conclusion : This study showed that BLE exerted inhibitory activities against PGE2, which is critical for the initiation and resolution of inflammatory responses, and that inhibition of PGE2 was mediated by suppression of NF-κB signaling. These results suggest that the waste broccoli leaves could be used for controlling inflammation.

개오동이 흰쥐의 Collagen 유발 관절염에 미치는 영향 (Effects of Catalpa Ovata on the Collagen-induced Arthritis in Lewis Rats)

  • 김순중;서일복;윤제필
    • 대한추나의학회지
    • /
    • 제4권1호
    • /
    • pp.75-88
    • /
    • 2003
  • Objectives : The purpose of this study is to find out the effects of Catalpa Ovata on the collagen-induced arthritis in the lewis rats. and we infere the effects of Catalpa Ovata on the rheumatoid arthritis in the human body. Methods : We investigated the effect of Catalpa Ovata on the Collagen-induced arthritis in Lewis rats via morphology, histology and serology as an experimental group, a control group, and a normal group. We feed Catalpa Ovata. only to an experimental group. Results : According to this research, the abnormal finding In Moire topography was 53.7% (1,018 students), and students needed X-ray re-examination were 11.2% (213 students). Students diagnosed scoliosis by X-ray re-examination were 1.8%. According to statistical analysis, interval between vertical base line of pelvis and vertical base line of neck, gap between left distance and right distance to the vertical base line of pelvis and difference of contour lines have strong correlations with deformity degree of the body surface examined by Moire. Conclusions : 1. The weight of an experimental group were lower than control group with statistically significant at 15 days later. 2, The paw edema volume of an experimental group were lower than control group at 10 days, 15 days later. but couldn't be found meaning. 3. The size of the tarsal joint of an experimental group were lower than control group at 5 days, 10 days, 15 days later, but couldn't be found meaning. 4. The volume of tumor necrosis factor-a at an experimental group were lower than control group with statistically significant. 5. The volume of interleukin-$1{\beta}$ at an experimental group were lower than control group with statistically significant. 6. An experimental group and a control group were showed ankylosing osteoarthritis, but an experimental group compared with a control group, alleviated In the fibrous ankylosis, destruction of articular cartilage and destruction of subchondral bony tissue. According to the above results, it might be considered that Catalpa Ovata has the suppression of the advance of the Collagen-induced arthritis and that result were presumed to bo connected with suppression of volume of the tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in the blood.

  • PDF

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

중의학 논문에 나타난 유방암의 연구 동향에 대한 고찰 - 중의학 논문을 중심으로 - (Recent Studies of Breast Cancer in Traditional Chinese Medicine Journals)

  • 정의민;정종수;박재우;정현식;윤성우
    • 대한한방부인과학회지
    • /
    • 제22권1호
    • /
    • pp.263-278
    • /
    • 2009
  • Purpose: The purpose of this study is to research trends in the study of breast cancer in Traditional Chinese Medicine (TCM) and to establish the further direction for its study. Methods: We reviewed TCM papers published in the last 29 years (1979-2008). Results: 1. We researched 49 papers and the patterns of study were as follows: in vitro studies were 27 papers (55.1%), in vivo studies were 9 papers (18.4%) and clinical studies were 19 papers (38.8%). 2. In vitro studies on breast cancer research in TCM were focused on cytotoxicity (17 papers) and apoptosis (8 papers). Most of in vivo studies (6 papers) were done for the purpose of inducing growth suppression of tumor cell after administration of the test drug. Each drug acted on this effect through various types of mechanism. 3. Unlike in vitro and in vivo studies, clinical studies on growth suppression of tumor cell were rare (4 papers). Most of the studies were focused on reduction of side effect of chemotherapy or synergistic effect with chemotherapy (7 papers), immune regulation (7 papers), and improvement of quality of life (6 papers). 4. Among the treatment method we reviewed, 'Runing Ⅱ(Ⅱ號方)' was the only medication that further studied as clinical trial after experimental study. 5. Since almost all studies have defects like poorly designed model or insufficient data description, it was difficult to make any definite conclusion about these studies. Conclusion: More subsequent clinical studies based on experimental study will be needed afterwards. Strict and high-level study design with detailed description will be needed in further study.

원발성 및 전이성 구강편평세포암종 세포주에서 p21 및 p73 mRNA발현에 관한 연구 (STUDY ON mRNA EXPRESSION OF P21 AND P73 IN THE CELL LINES OF PRIMARY AND METASTATIC SQUAMOUS CELL CARCINOMA)

  • 강정훈;김경욱;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권6호
    • /
    • pp.483-490
    • /
    • 2001
  • There were many controversies in the cause and progress of tumorigenesis. Recently, studies on the mutation of genes related to the tumor have extensively been performed due to development of molecular biology. Structural and morphological changes of chromosomes, which are related to the abnormal activation of oncogenes or inactivation of tumor suppression genes, transform the normal cells into the tumor cells. p53 and Rb are well known tumor suppressor genes, while oncogenes include c-myc, bcl-2 and ras, etc. When exposed to cell damaging agents, p53 inhibits cell growth by inducing transcription of p21. Especially p73, which is homo-logy of p53, frequently deleted in melanoma, neuroblastoma, colon cancer, and breast cancer, when over produced, p73 activates the transcription of p21, bax-1 and inhibits cell growth by inducing apoptosis. For study on mRNA expression of p21 and p73, normal oral keratinocytes, and cell lines of primary and metastatic oral squamous cell carcinoma were cultured and then electrophoresis and RT-PCR(reverse transcription-polymerase chain reaction) were performed. 1. The mRNA of p21 and p73 in normal oral keratinocyte expressed lower than that of primary squamous cell carcinoma. 2. The mRNA of p21 in metastatic oral squamous carcinoma cell lines was expressed as various patterns compared with that of normal oral keratinocyte. 3. In the metastatic oral squamous cell lines, the mRNA of HN8 expressed higher than that of HN12 or HN19. 4. The mRNA of p73 in primary oral squamous cell lines expressed 4-5 times higher than that of normal keratinocyte. 5. In metastatic oral squamous cell lines, there was no significant expression of p73 mRNA compared with that of normal oral keratinocyte. From the results obtained in this study, mRNA expression of p73 in primary oral squamous cell lines was remarkable, while mRNA expression of p21 and p73 in metastatic oral squamous cell lines were statistically insignificant.

  • PDF

암 치료 표적으로서 p53의 구조적 및 기능적 역할 (The Structural and Functional Role of p53 as a Cancer Therapeutic Target)

  • 한창우;박소영;정미숙;장세복
    • 생명과학회지
    • /
    • 제28권4호
    • /
    • pp.488-495
    • /
    • 2018
  • p53 유전자는 스트레스, DNA 손상, 저산소증 및 종양 발생에 대한 세포 반응의 전사 조절에서 중요한 역할을 담당한다. 최근에 발견된 다양한 종류의 p53의 생리 활성을 생각한다면 p53이 암 조절에 관여한다는 것은 놀랄만한 일이 아니다. 인간 암의 약 50%에는 p53 유전자의 돌연변이 또는 p53을 활성화시키는 기전의 결함을 통해 p53 단백질 기능의 불활성화가 나타난다. p53 기능의 이러한 장애는 p53 의존 반응으로부터 회피를 허용함으로써 종양의 진화에 결정적인 역할을 하게 된다. 최근의 많은 연구들은 p53의 돌연변이를 대폭 감소시키거나 p53의 종양 억제 기능을 복원하기 위하여 선택적인 저분자 화합물을 동정함으로써 p53의 돌연변이를 직접 표적하는 것에 초점을 두고 있다. 이들 저분자는 좋은 약물과 유사한 특성을 유지하면서 다양한 상호작용을 효과적으로 조절해야 한다. 이 중, p53의 음성조절인자 핵심인 MDM2의 발견은 p53과 MDM2 간의 상호작용을 차단하는 새로운 저분자 억제제의 설계를 제공하였다. 저분자 화합물 중 일부는 개념 증명 연구에서 임상 시험으로 옮겨졌으며 향후 맞춤형 항암제가 추가될 전망이다. 본 리뷰에서는 야생형 p53과 돌연변이 p53의 구조적 및 기능적 중요성과 p53을 직접 표적하는 치료제 개발, p53과 MDM2 간의 상호작용을 억제하는 화합물에 대하여 검토하였다.

게르마늄 강화효모의 마우스에서의 암세포 억제 및 대식세포, NK 세포, B 세포의 활성화에 관한 연구 (Germanium-Fortified Yeast Activates Macrophage, NK Cells and B Cells and Inhibits Tumor Progression in Mice.)

  • 백대헌;정진욱;손창욱;강종구
    • 한국미생물·생명공학회지
    • /
    • 제35권2호
    • /
    • pp.118-127
    • /
    • 2007
  • 본 연구는 마우스를 대상으로 유기게르마늄 강화효모 경구투여에 의한 면역조절작용 효과를 확인하고자 하였다. 마우스를 대상으로 9일간 경구투여한 결과 대조군인 게르마늄 비강화 효모 투여군에 비해 복강대식세포, B세포, NK 세포의 활성이 현저히 증가한 것으로 확인되었으며, 최종 실험결과 대식세포는 게르마늄 강화효모 투여 후 식세포활성, 주화성, 부착성, rosette 형성능 현저히 증가하였다. Superoxide $anion(O_2^-)$ 생성능은 대조군에 비해 유기게르마늄 강화군 투여군에서 3배 활성이 증가하였으며, NO 생성능과 $TNF-{\alpha}$ 생성능도 농도의존적으로 증가하였다. B-세포 활성화에 의한 cytolytic activity 증가에 의한 PFC형성능도 게르마늄 비강화 효모에 비해 현저히 증가하였으며 상업화 유기게르마늄으로 알려지고 있는 Ge-132에 비해 2배 이상 높은 활성이 확인되었다. Cytotoxic acivity에 의한 항 종양활성에서는 양성대조군인 Doxorubicin 투여군에서와 유사한 저해활성을 나타내었으며 고용량 유기게르마늄 효모(2,400 mg/kg) 투여시 60%의 종양활성 억제효과가 확인되었다. 이러한 결과를 종합해 볼 때 유기게르마늄 강화효모가 실험동물 뿐만 아니라 인체의 유용한 면역조절제로서의 이용성이 기대된다.