• 제목/요약/키워드: tumor necrosis factor-kappaB

검색결과 441건 처리시간 0.026초

가시여지잎(Annona muricata L.) 에탄올 추출물과 조다당 분획분의 면역활성 비교 (A comparative study of the immuno-modulatory activities of ethanol extracts and crude polysaccharide fractions from Annona muricata L.)

  • 김이은;이정희;성낙윤;안동현;변의홍
    • 한국식품과학회지
    • /
    • 제49권4호
    • /
    • pp.453-458
    • /
    • 2017
  • 본 연구는 가시여지 잎 에탄올 추출물(ALE) 및 조다당 추출물(ALP)의 면역 활성에 관하여 비교하기 위하여, 선천 및 적응면역에서 중추적인 역할을 수행하는 큰포식세포에 ALE 및 ALP를 처리하여 세포 증식률, 산화질소 분비능, 사이토카인(종양괴사인자, IL-6, $IL-1{\beta}$) 분비능 및 기전 분석을 통한 신호전달에 관하여 관찰하였다. ALE 및 ALP를 큰포식세포에 처리하여 면역활성에 관하여 비교하였을 때, 큰포식세포 면역활성의 바이오-마커인 산화질소, 사이토카인의 분비능 및 iNOS의 세포내 발현이 ALP 처리구에서 유의적으로 증가되는 것으로 관찰되었으며, 기전분석결과, ALP의 처리는 MPAKs의 인산화 및 $NF-{\kappa}B$의 핵내 이동성을 증가시켜 면역활성을 증가시키는 것으로 관찰되었다. 따라서, ALP의 높은 면역활성은 MPAKs의 인산화 및 $NF-{\kappa}B$의 활성과 밀접한 관련이 있는 것으로 판단된다.

리포다당질로 유도된 급성 폐손상 후 섬유화증식에서 Transglutaminase-2의 역할 (The Role of Transglutaminase-2 in Fibroproliferation after Lipopolysaccharide-induced Acute Lung Injury)

  • 김제형
    • Tuberculosis and Respiratory Diseases
    • /
    • 제69권5호
    • /
    • pp.337-347
    • /
    • 2010
  • Background: Transglutaminase-2 (TG-2) has been reported to play an important role in the process of fibrosis. However, TG-2 studies on fibroproliferation of acute lung injury (ALI) are absent. The purpose of this study was to investigate the role of TG-2 in the fibroproliferation of lipopolysaccharide (LPS)-induced ALI. Methods: The male C57BL/6 mice of 5 weeks age were divided into 3 groups; control group (n=30) in which $50{\mu}L$ of saline was given intratracheally (IT), LPS group (n=30) in which LPS 0.5 mg/kg/$50{\mu}L$ of saline was given IT, and LPS+Cyst group treated with intraperitoneal 200 mg/kg of cystamine, competitive inhibitor of TG-2, after induction of ALI by LPS. TG-2 activity and nuclear factor $(NF)-{\kappa}B$ were measured in lung tissue homogenate. Tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and transforming growth factor (TGF)-${\beta}1$ were measured using bronchoalveolar lavage fluids. Histopathologic ALI score and Mallory's phosphotunistic acid hematoxylin (PTAH) for collagen and fibronectin deposition were performed. Results: The TG-2 activities in the LPS group were significantly higher than the control and LPS+Cyst groups (p<0.05). The TNF-${\alpha}$ and IL-$1{\beta}$ concentrations and $NF-{\kappa}B$ activity were lower in the LPS+Cyst group than the LPS group (p<0.05). The LPS+Cyst group showed lower MPO, ALI score, TGF-${\beta}1$ concentration, and Mallory's PTAH stain than the LPS group, but the differences were not significant (p>0.05). Conclusion: Inhibition of TG-2 activity in the LPS-induced ALI prevented early inflammatory parameters, but had limited effects on late ALI and fibroproliferative parameters.

Nuclear factor kappa-B- and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages

  • Yang, Woo Seok;Yi, Young-Su;Kim, Donghyun;Kim, Min Ho;Park, Jae Gwang;Kim, Eunji;Lee, Sang Yeol;Yoon, Keejung;Kim, Jong-Hoon;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.298-306
    • /
    • 2017
  • Background: Compound K (CK) is a bioactive derivative of ginsenoside Rb1 in Panax ginseng (Korean ginseng). Its biological and pharmacological activities have been studied in various disease conditions, although its immunomodulatory role in innate immunity mediated by monocytes/macrophages has been poorly understood. In this study, we aimed to elucidate the regulatory role of CK on cellular events mediated by monocytes and macrophages in innate immune responses. Methods: The immunomodulatory role of CK was explored by various immunoassays including cell-cell adhesion, fibronectin adhesion, cell migration, phagocytic uptake, costimulatory molecules, reactive oxygen species production, luciferase activity, and by the measurement of mRNA levels of proinflammatory genes. Results: Compound K induced cell cluster formation through cell-cell adhesion, cell migration, and phagocytic activity, but it suppressed cell-tissue interactions in U937 and RAW264.7 cells. Compound K also upregulated the surface expression of the cell adhesion molecule cluster of differentiation (CD) 43 (CD43) and costimulatory molecules CD69, CD80, and CD86, but it downregulated the expression of monocyte differentiation marker CD82 in RAW264.7 cells. Moreover, CK induced the release of reactive oxygen species and induced messenger RNA expression of proinflammatory genes, inducible nitric oxide synthase, and tumor necrosis factor-alpha by enhancing the nuclear translocation and transcriptional activities of nuclear factor kappa-B and activator protein-1. Conclusion: Our results suggest that CK has an immunomodulatory role in innate immune responses through regulating various cellular events mediated by monocytes and macrophages.

Ribes fasciculatum var. chinense Attenuated Allergic Inflammation In Vivo and In Vitro

  • Jung, Ji-Wook;Kim, Su-Jin;Ahn, Eun-Mi;Oh, Sa-Rang;Lee, Hye-Ja;Jeong, Ji-Ahn;Lee, Ju-Young
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.547-552
    • /
    • 2014
  • Ribes fasciculatum var. chinense MAX. (R. fasciculatum) has traditionally been used in Korea to treat inflammatory diseases. However, the exact mechanism that accounts for the anti-inflammatory effect of R. fasciculatum is not completely understood. We aimed to ascertain the pharmacological effects of R. fasciculatum on both compound 48/80- or histamine-induced scratching behaviors and 2, 4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice. Additionally, to find a possible explanation for the anti-inflammatory effects of R. fasciculatum, we evaluated the effects of R. fasciculatum on the production of inflammatory mediators in LPS-stimulated macrophage cells. Treatment of R. fasciculatum significantly reduced compound 48/80- or histamine-induced the pruritus in mice. R. fasciculatum attenuated the AD symptoms such as eczematous, erythema and dryness and serum IgE levels in AD model. Additionally, R. fasciculatum inhibited the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6). The maximal rates of TNF-${\alpha}$ and IL-6 inhibition by R. fasciculatum (1 mg/ml) were approximately 32.12% and 46.24%, respectively. We also showed that R. fasciculatum inhibited the activation of nuclear factor-kappa B in LPS-stimulated macrophages. Collectively, the findings of this study provide us with novel insights into the pharmacological actions of R. fasciculatum as a potential molecule for use in the treatment of allergic inflammatory diseases.

Korean Red Ginseng and Portulaca oleracea Extracts Attenuate Lipopolysaccharide-induced Inflammation via Downregulation of Nuclear Factor Kappa-B and the Mitogen-activated Protein Kinase Signaling Pathway in Macrophage Cell Line RAW 264.7

  • Ullah, HM Arif;Kim, Tae-Hwan;Saba, Evelyn;Kim, Sung Dae;Rhee, Man Hee
    • 대한의생명과학회지
    • /
    • 제27권2호
    • /
    • pp.51-58
    • /
    • 2021
  • Korean red ginseng (Panax ginseng Meyer) is a well-known traditional medicine, with numerous biological functions in the body. Portulaca oleracea (P. ole) belongs to the Portulacaceae family and has bioactive potential as a traditional medicine. This study aimed to determine the anti-inflammatory effects of Korean red ginseng extract (RGE) and P. ole extract on lipopolysaccharide (LPS)-treated RAW 264.7 cells. The combination of RGE (50 ㎍/mL) and P. ole (6.25 ㎍/mL) extracts significantly suppressed LPS-induced nitric oxide synthesis. The expression of proinflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α, were markedly decreased by the combined treatment with RGE (50 ㎍/mL) and P. ole (6.25 ㎍/mL). Moreover, iNOS and COX-2 protein expression levels were also significantly reduced in the combined treatment compared to the LPS-stimulated group. In addition, the nuclear translocation of phosphorylated nuclear factor kappa-B was suppressed by the treatment with RGE and P. ole. Moreover, the mitogen-activated protein kinase pathway was also partially inhibited by the combination treatment with RGE and P. ole. Our results demonstrate that the treatment mixture with RGE and P. ole could be used as functional food and therapeutic herbal medicine in various inflammatory diseases.

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Byung-Oh;Choi, Hyong-Woo;Park, Kyeung-Il;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • 제63권2호
    • /
    • pp.117-123
    • /
    • 2020
  • We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권1호
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

Ginsenosides Inhibit HMGB1-induced Inflammatory Responses in HUVECs and in Murine Polymicrobial Sepsis

  • Lee, Wonhwa;Ku, Sae-Kwang;Jeong, Tae Cheon;Lee, Sangkyu;Bae, Jong-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2955-2962
    • /
    • 2014
  • Asian ginseng is used as a treatment for cardiovascular diseases, ischemia, and cancers. High mobility group box 1 (HMGB1) protein acts as a late mediator of severe vascular inflammatory conditions. However, the effect of ginsenosides from Asian ginseng on HMGB1-induced inflammatory responses has not been studied. We addressed this question by monitoring the effects of ginsenoside treatment on lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-mediated release of HMGB1, and HMGB1-mediated regulation of proinflammatory responses. Ginsenoside treatment suppressed LPS-mediated release of HMGB1 and HMGB1-mediated cytoskeletal rearrangements. Ginsenosides also inhibited HMGB1-mediated inflammatory responses. In addition, ginsenosides inhibited the production of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and activation of protein kinase B (Akt), nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and extracellular-regulated kinases (ERK) 1/2 by HMGB1. Ginsenosides also decreased CLP-induced release of HMGB1, production of interleukin (IL) $1{\beta}/6$, and mortality. These results suggested that ginsenosides may be potential therapeutic agents for treatment of vascular inflammatory diseases through inhibition of the HMGB1 signaling pathway.

LPS로 유도된 RAW 264.7 대식세포에 대한 대황(Eisenia bicyclis) 헥산 분획물의 항염증 효과 (Anti-Inflammatory Effect of Hexane Fraction from Eisenia bicyclis on Lipopolysaccharides-Treated RAW 264.7 Cells)

  • 김보운;최창근;김재일;김형락
    • 한국수산과학회지
    • /
    • 제54권2호
    • /
    • pp.152-161
    • /
    • 2021
  • Eisenia bicyclis is known to have secondary metabolites exhibiting various biological activities. In a preliminary study, the n-hexane fraction obtained from the ethanolic extract of E. bicyclis showed higher anti-inflammatory activity than the ethyl acetate and butyl alcohol fractions based on the inhibition of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Using this fraction (E. bicyclis hexane fraction, EHF), we investigated the molecular mechanisms underlying its anti-inflammatory effect in LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to 50 ㎍/mL EHF significantly inhibited NO and prostaglandin E2 production as well as their responsible enzyme proteins and mRNAs, in a dose-dependent manner (P<0.05). Similarly, EHF markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α as well as their mRNA levels. Nuclear translocation of nuclear factor-kappa B (NF-κB) was strongly suppressed by EHF treatment. EHF significantly reduced the phosphorylation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. Moreover, EHF reduced ear edema in phorbol myristate acetate (PMA)-induced mice. These results indicate that EHF contains potent anti-inflammatory compounds, which may be used as a dietary supplement for the prevention of inflammatory diseases.