• 제목/요약/키워드: tumor necrosis factor-kappaB

검색결과 446건 처리시간 0.029초

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

백혈병세포에서 종양괴사인자에 의한 PTEN 발현증가 (Tumor Necrosis Factor-Alpha $(TNF-{\alpha})$ Induces PTEN Expression in HL-60 Cells)

  • 이성호;박철홍;김병수
    • 한국식품위생안전성학회지
    • /
    • 제21권3호
    • /
    • pp.181-188
    • /
    • 2006
  • Tumor necrosis ftctor-alpha$(TNF-{\alpha})$는 세포의 고사, 염증 및 면역 등의 다양한 생물학적 기능에 대한 역할을 한다. PTEN 역시 세포의 성장과 증식 그리고 세포의 유주와 분화 등의 세포학적인 다양한 기능을 갖는다 그러므로 이들 두 분자들 사이의 상호관계가 있을 것으로 제안되고 있으며, $TNF-{\alpha}$는 사람의 대장세포 주인 HT-29에서 nuclear factor-kappa $B(NF-{\kappa}B)$ 경로를 통해 PTEN downregulate 기능이 있는 것으로 알려져 왔다. 그러나 저자 등은 본 연구에서 HL-60 cells에서 $TNF-{\alpha}$$NF-{\kappa}B$를 통해 PTEN를 upregulates하는 기존의 반대 현상을 확인하였다. $TNF-{\alpha}$는 HL-60 cells에서 time과 dose의존성 방법으로 PTEN 발현을 증가시켰지만 반응은 p65 anisense oligonucleotide 또는 pyrrolidine dithiocarbamate(PDTC)으로 $NF-{\kappa}B$를 분해함으로 파괴되었다. 따라서 저자 등은 $TNF-{\alpha}$$NF-{\kappa}B$경로를 활성화시킴을 확인하였고, $TNF-{\alpha}$를 처리 할 경우 핵에 대하여 p65 전위에 의해 $TNF-{\alpha}$가 활성화됨을 증명하였다. 결국 HL-60세포에서 $NF-{\kappa}B$의 활성화에 따라 PTEN 발현의 upregulation이 유도되는 것으로 결론지었다.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.

종양의 성장 및 전이에 있어서 NF-κB의 역할 (Role of Nuclear Factor (NF)-κB Activation in Tumor Growth and Metastasis)

  • 고현미;최정화;나명석;임선영
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2003
  • Background: Platelet-activating factor (PAF) induces nuclear factor $(NF)-{\kappa}B$ activation and angiogenesis and increases tumor growth and pulmonary tumor metastasis in vivo. The role of $NF-{\kappa}B$ activation in PAF-induced angiogenesis in a mouse model of Matrigel implantation, and in PAF-mediated pulmonary tumor metastasis were investigated. Methods: Angiogenesis using Matrigel and experimental pulmonary tumor metastasis were tested in a mouse model. Electrophoretic mobility shift assay was done for the assessment of $NF-{\kappa}B$ translocation to the nucleus. Expression of angiogenic factors, such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\alpha}$, basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were tested by RT-PCR and ELISA. Results: PAF induced a dose- and time-dependent angiogenic response. PAF-induced angiogenesis was significantly blocked by PAF antagonist, CV6209, and inhibitors of $NF-{\kappa}B$ expression or action, including antisense oligonucleotides to p65 subunit of $NF-{\kappa}B$ (p65 AS) and antioxidants such as ${\alpha}$-tocopherol and N-acetyl-L-cysteine. In vitro, PAF activated the transcription factor, $NF-{\kappa}B$ and induced mRNA expression of $TNF-{\alpha}$, $IL-1{\alpha}$, bFGF, VEGF, and its receptor, KDR. The PAF-induced expression of the above mentioned factors was inhibited by p65 AS or antioxidants. Also, protein synthesis of VEGF was increased by PAF and inhibited by p65 AS or antioxidants. The angiogenic effect of PAF was blocked when anti-VEGF antibodies was treated or antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF was co-administrated, but not by antibodies against $TNF-{\alpha}$, $IL-1{\alpha}$, and bFGF each alone. PAF-augmented pulmonary tumor metastasis was inhibited by p65 AS or antioxidants. Conclusion: These data indicate that PAF increases angiogenesis and pulmonary tumor metastasis through $NF-{\kappa}B$ activation and expression of $NF-{\kappa}B$-dependent angiogenic factors.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.

FADD 과발현 평활근세포에서 분비하는 Turner Necrosis Factor-α의 작용 (Biological Activity of Tumor Necrosis Factor-α Secreted from Smooth Muscle Cell Overexpressing FADD)

  • 김선미;이경아;김관회
    • 생명과학회지
    • /
    • 제17권1호
    • /
    • pp.45-50
    • /
    • 2007
  • 세포 배양액에 tetracycline이 없는 경우 FADD를 발현하면서 사멸하는 평활근세포 (FADD-SMC)에서 분비하는 $TNF-\alpha$의 활성을 조사하였다. 배양액에 tetracycline이 없는 경우 FADD-SMC는 약 1000 pg/ml의 $TNF-\alpha$를 분비하였다. $TNF-\alpha$를 포함하는 배양액을 분리하고, 이 배양액을 정상세포에 처리한 결과 인산화한 p38 MAPK와 nuclear, factor, kappa B (NF-kB)의 활성이 증가하였다. 또한 이 배양액을 L929 세포에 처리하는 경우 세포독성이 발생하였다. NF-kB, p38 MAPK 그리고 L929 세포에 대찬 효과는 배양액에서 suluble TNF receptor를 이용하여 $TNF-\alpha$를 제거하는 경우 감소하였다.

Evidence of hydrolyzed traditional Korean red ginseng by malted barley on activation of receptor interacting proteins 2 and IkappaB kinase-beta in mouse peritoneal macrophages

  • Rim, Hong-Kun;Kim, Kyu-Yeob;Moon, Phil-Dong
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.27.1-27.6
    • /
    • 2012
  • Red ginseng, which has a variety of biological and pharmacological activities including antioxidant, anti-inflammatory, antimutagenic and anticarcinogenic effects, has been used for thousands of years as a general tonic in traditional oriental medicine. Here, we tested the immune regulatory activities of hydrolyzed red ginseng by malted barley (HRG) on the expressions of receptor interacting proteins (Rip) 2 and $I{\kappa}B$ kinase-beta (IKK-${\beta}$) in mouse peritoneal macrophages. We show that HRG increased the activations of Rip 2 and IKK-${\beta}$ for the first time. When HRG was used in combination with recombinant interferon-${\gamma}$ (rIFN-${\gamma}$), there was a marked cooperative induction of nitric oxide (NO) production. The increased expression of inducible NO synthase from rIFN-${\gamma}$ plus HRG-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). In addition, the treatment of peritoneal macrophages with rIFN-${\gamma}$ plus HRG caused significant increases in tumor necrosis factor (TNF)-${\alpha}$ mRNA expression and production. Because NO and TNF-${\alpha}$ play an important role in the immune function and host defense, HRG treatment can modulate several aspects of the host defense mechanisms as a result of the stimulations of the inducible nitric oxide synthase and NF-${\kappa}B$. In conclusion, our findings demonstrate that HRG increases the productions of NO and TNF-${\alpha}$ from rIFN-${\gamma}$-primed macrophages and suggest that Rip2/IKK-${\beta}$ plays a critical role in mediating these immune regulatory effects of HRG.

씀바귀 약침이 RAW 264.7 대식세포에서 tumor necrosis factor alpha 생성에 미치는 영향 연구 (Decrease of tumor necrosis factor alpha (Tnf) production by Ixeris dentata extract in RAW 264.7 macrophage cells)

  • 최봉근;홍승제;반주연;엄윤경;정경희
    • Korean Journal of Acupuncture
    • /
    • 제24권3호
    • /
    • pp.139-148
    • /
    • 2007
  • 목 적 : 약침으로서 씀바귀의 염증 효과를 알아보기 위해 RAW 264.7 대식세포에서 Tnf 생성을 확인하였다. 방 법: 씀바귀를 RAW 264.7 대식세포에 미리 처치한 후 LPS로 염증 반응을 유도하였다. ELISA, Western blotting, RT-PCR, 그리고 EMSA을 통해 Tnf의 생성과 발현에 대한 효과를 평가하였다. 결 과 : LPS 유도된 세포에서 씀바귀 1, 5, 10, 50 ${\mu}g/ml$의 농도는 각각 23.7, 37.8, 66.4, 86.1% Tnf 생성을 억제한 것을 ELISA 통해 확인되었다. LPS로 유도된 대식세포에서 Tnf 생성은 농도에 따라 감소하였고, Western blotting, RT-PCR 분석에서는 씀바귀 5과 50 ${\mu}g/ml$가 LPS로 유도된 대식세포에서 Tnf의 mRNA와 단백질 발현을 저해 하는 것으로 관찰되었다. 또한 EMSA에서도 씀바귀 5과 50 ${\mu}g/ml$가 LPS로 유도된 Nf-kB를 감소시키는 것을 확인하였다. 고 찰 : 이런 결과는 씀바귀가 $Nf-{\kappa}B$를 저해하면서 LPS로 유발된 Tnf 생성을 감소시킨다는 것을 보여주었고, 이는 더 나아가 염증 질환에서 씀바귀가 약침으로써의 치료적 효과를 나타낼 수 있을 것으로 사료된다. 고 찰 : 이런 결과는 씀바귀가 $Nf-_{k}B$를 저해하면서 LPS로 유발된 Tnf 생성을 감소시킨다는 것을 보여주었고, 이는 더 나아가 염증 질환에서 씀바귀가 약침으로써의 치료적 효과를 나타낼 수 있을 것으로 사료된다.

  • PDF