• Title/Summary/Keyword: tube bending

Search Result 306, Processing Time 0.024 seconds

Mechanical Performance Study of Piggy Back Clamp for Submarine Cables (해저케이블용 피기백 클램프의 기계적 성능 연구)

  • Yun Jae Kim;Kyeong Soo Ahn;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.108-114
    • /
    • 2024
  • Due to the continuously increasing global demand for electricity, the demand for high-voltage submarine cables is also increasing. One of the issues that need to be addressed for submarine cables is the high production cost and expensive laying costs. Submarine cables exposed to the marine environment encounter external forces such as wave and current, leading to issues such as cable damage due to external factors or high maintenance costs in the event of an accident. Therefore, we are preparing for the uncertainty of the submarine environment through many protective materials and protective equipment. In this study, we examined the bending performance of piggyback clamps (PBC) and strap, which are representative protective equipment, in response to the submarine environment through analytical methods. To examine the structural performance of PBC, the bending performance were assessed under the maximum bending moment criterion of 15 kN·m for the flexible protection tube. As a result, it was confirmed that the structural performance regarding the bending moment of both PBC and straps was ensured.

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

Hydro-forming Process of Automotive Rear Sub-frame by Computer Simulation (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 리어 서브-프레임의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Tae-Sung;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.38-43
    • /
    • 2008
  • The hydroforming technology has been spreaded dramatically in automotive industry last 10 years. Itmay cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of rear sub-frame parts development by tube hydroforming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

A Study on Optimum Confined Effect for Internally Confined Hollow CFT Columns under Uniaxial Compression (일축압축을 받는 내부 구속 중공 CFT 기둥의 최적 구속 효과 연구)

  • Won, Deok Hee;Han, Taek Hee;Yoon, Na Ri;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.227-235
    • /
    • 2012
  • Recently, study of confining effect in column members is progressed. But these studies are limited to about RC column and external confining effect in hollow columns. Internal confining effect in hollow columns has not researched. Internal confining stress is assumed the same external confining stress in hollow columns. In this study, there are to investigate the internal direction confining effect in ICH CFT column by FEA analysis. FEA analysis methods have verified by experimental values. Parametric study has performed as thickness of internal tube, hollow ratio, diameter of column and bending stiffness between concrete and external tube. Modified equations have suggested to estimating economic and reasonable thickness of internal tube.

Numerical Investigation of Dynamic Responses of a Thermal Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 데토네이션 하중에 의한 열탄소성 관의 동적 거동 해석)

  • Gwak, Min-cheol;Lee, Younghun;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.60-69
    • /
    • 2016
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with Chapman-Jouguet (C-J) condition and experimental cell size. To conform the elasto-plastic model, plastic and elastic behaviors are verified by Taylor impact and plate bending motion, respectively. The numerical results are compared with the theory on burst pressure of tube. The critical deformable thickness with the thermal softening considered is good agreement with the theoretical value.

Interface Behavior of Concrete Infilled Steel Tube Composite Beam (콘크리트충전 강관 합성보의 계면거동)

  • Lee, Yong-Hak;Lee, Ta;Jeong, Jong-Hyeon;Kim, Hyeong-Ju;Park, Kun-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • Interface behavior and confining effects of concrete-infilled steel tube (CFT) composite beam were investigate based on the experimental observations and numerical analyses. For this purpose, laboratory four-points bending tests were performed for the two test specimens of 1,000mm long CFT composite beams. The test beams were made of ${\phi}110mm$ and 4.5mm thick steel tube and 10mm thick steel web and bottom flange. Therefore, concrete infilled in steel tube was in compression through the entire cross section due to the web and bottom flange. Two end section conditions, with end section cap and without end section cap, were considered in experiments to monitor the relative slip displacement at ends and induce confining effects at center. In numerical aspects, finite element analysis considering steel-concrete interface behavior was performed and compared to the experimental results.

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects (구속 효과를 고려한 원형 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

The Study of Manufacturing Technology for a Sill Side by Roll Forming (다단 성형 기술을 이용한 차체 부품 개발)

  • Kim, D.K.;Han, S.W.;Jeon, H.J.;Cheon, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Mechanical and Magnetic Properties Variation of YBCO Superconductors with Resin and Ag Impregnation (Resin, Ag를 첨가한 YBCO 초전도체의 기계, 자기적 특성 변화)

  • Lee, N.I.;Jang, G.E.;Kim, C.J.;Jung, S.Y.;Han, Y.H.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.119-121
    • /
    • 2006
  • We studied the mechanical and magnetic properties of Y-Ba-Cu-O superconductor with and without resin and Ag impregnation. Bulk YBCO superconductor was manufactured with the top-seeded melt-growth method. Typical sample of 40mm X 20mm X 3mm was made and then 8 holes with 0.5mm diameter were drilled arbitrally. Epoxy resin and $AgNO_3$ were systematically added into the holes to compare the mechanical and magnetic properties of YBCO superconductor before and after reinforcement of resin and Ag. Based on the result of 3 point bending, bending strength increased with increasing amounts of resin and carbon nano-tube. However, it was found that the levitation force decreased after making hole, compared with virgin sample without hole.

  • PDF