• Title/Summary/Keyword: truss design

Search Result 490, Processing Time 0.021 seconds

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF

Optimum Design of Grid Structures with Pretension (초기인장력을 받은 그리드 구조물의 최적설계)

  • Kim, Dae-Hwan;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this study, micro genetic algorithm is used to find an optimum cross section of grid structures with pretension. Design optimization of trusses consists of arriving at optimum sizes of cross-section and prestressing force parameters, when weight of the truss is minimum, satisfying a set of specified constraints. The present approach is verified by ten-bar truss example showing good agreements with previous results. Features of the proposed method, which help in modeling and application to optimal design of pretensioned truss structures, are demonstrated by solving a problem of seventy two bar truss structures. The minimum weight design of seventy two bar truss is performed for various magnitudes of pretension and optimal prestressing forces are also found for various configurations of pretensioned truss structures.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

A Study on the Structural Behaviour of Staggered Truss System by the Shape of Truss (트러스 형태에 따른 스태거드트러스 골조시스템의 구조특성에 관한 연구)

  • Rha, Chang-Soon;Hong, Yoon-Soo;Yu, Eun-Jong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.199-206
    • /
    • 2017
  • This paper analyzed structural behaviors of the staggered truss system, typically used in low seismicity regions, resisting the lateral loads such as wind and seismic load. A comparative study of cost and efficiency was carried out by analysing and designing the 10- and 20-story buildings with various types of truss, including pratt, howe, warren, K-, and vierendeel, which may typically be used in staggered truss system. In design, column and truss members are selected in group, and the efficiency of the member design was judged by average demand capacity ratio of the all members in same group. And economic analysis of the system was investigated by the quantity of the structural members. As a result, staggered truss system with the pratt truss and warren truss showed the most economical and efficient performance for 10-story building, and 20-story building, respectively.

Discrete Sizing Design of Truss Structure Using an Approximate Model and Post-Processing (근사모델과 후처리를 이용한 트러스 구조물의 이산 치수설계)

  • Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • Structural optimization problems with discrete design variables require more function calculations (or finite element analyses) than those in the continuous design space. In this study, a method to find an optimal solution in the discrete design of the truss structure is presented, reducing the number of function calculations. Because a continuous optimal solution is the Karush-Kuhn-Tucker point that satisfies the optimality condition, it is assumed that the discrete optimal solution is around the continuous optimum. Then, response values such as weight, displacement, and stress are predicted using approximate models-referred to as hybrid metamodels-within specified design ranges. The discrete design method using the hybrid metamodels is used as a post-process of the continuous optimization process. Standard truss design problems of 10-bar, 25-bar, 15-bar, and 52-bar are solved to show the usefulness of this method. The results are compared with those of existing methods.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

A Study on Adaptation of Neural Network to Warren Truss Design (와렌 트러스 설계에의 신경망 적용에 관한 연구)

  • Shin, Dong Cheol;Lee, Seung Chang;Cho, Young Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.413-422
    • /
    • 2003
  • Most engineers tend to rely on their intuition or existing data in formulating structural design or preliminary estimate of various conditions. Because of these variations, the artificial neural network is used as an alternative design model of the warren truss since it can handle uncertainty through the probability method. This research validated the approximate structural design model of the warren truss, with its proper parameter values of the neural network and design process falling within 10 percent torrence of the different designs that resulted between this model and the MIDAS program. The suggested model for the process was adapted for the truss design using the member section table, while time saving and efficiency are based on the allowed range of torrence.